Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).
Google Scholar
Xu, K. Electrolytes, Interfaces and Interphases: Fundamentals and Applications in Batteries (Royal Society of Chemistry, 2023).
Meng, Y. S., Srinivasan, V. & Xu, K. Designing better electrolytes. Science 378, eabq3750 (2022).
Google Scholar
Unke, O. T. et al. Machine learning force fields. Chem. Rev. 121, 10142–10186 (2021).
Google Scholar
Frenkel, D. & Smit, B. Understanding Molecular Simulation: From Algorithms To Applications (Elsevier, 2023).
Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
Google Scholar
Zhang, L., Han, J., Wang, H., Car, R. & E, W. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).
Google Scholar
Lysogorskiy, Y. et al. Performant implementation of the atomic cluster expansion (PACE) and application to copper and silicon. npj Comput. Mater. 7, 97 (2021).
Google Scholar
Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A. & Müller, K.-R. SchNet—a deep learning architecture for molecules and materials. J. Chem. Phys. 148, 241722 (2018).
Google Scholar
Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13, 2453 (2022).
Google Scholar
Liao, Y.-L. & Smidt, T. Equiformer: equivariant graph attention transformer for 3D atomistic graphs. In Proc. Eleventh International Conference on Learning Representations (ICLR, 2023).
Thölke, P. & De Fabritiis, G. TorchMD-NET: equivariant transformers for neural network based molecular potentials. In Proc. Tenth International Conference on Learning Representations (ICLR, 2022).
Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nat. Commun. 12, 398 (2021).
Google Scholar
Zhang, L. et al. A deep potential model with long-range electrostatic interactions. J. Chem. Phys. 156, 124107 (2022).
Google Scholar
Anstine, D., Zubatyuk, R. & Isayev, O. AIMNet2: a neural network potential to meet your neutral, charged, organic, and elemental-organic needs. Preprint at ChemRxiv (2023).
Unke, O. & Meuwly, M. PhysNet: a neural network for predicting energies, forces, dipole moments and partial charges. J. Chem. Theory Comput. 15, 3678–3693 (2019).
Google Scholar
Unke, O. et al. SpookyNet: learning force fields with electronic degrees of freedom and nonlocal effects. Nat. Commun. 12, 12 (2021).
Google Scholar
Yu, H. et al. Spin-dependent graph neural network potential for magnetic materials. Phys. Rev. B 109, 144426 (2023).
Chen, C. & Ong, S. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).
Google Scholar
Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).
Google Scholar
Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).
Google Scholar
Zhang, D. et al. DPA-2: towards a universal large atomic model for molecular and material simulation. npj Comput. Mater. (2024).
Batatia, I. et al. A foundation model for atomistic materials chemistry. Preprint at (2024).
Kovács, D. P. et al. MACE-OFF23: transferable machine learning force fields for organic molecules. Preprint at (2023).
Wang, H. & Yang, W. Force field for water based on neural network. J. Phys. Chem. Lett. 9, 3232–3240 (2018).
Google Scholar
Zhang, J., Pagotto, J., Gould, T. & Duignan, T. T. Accurate, fast and generalisable first principles simulation of aqueous lithium chloride. Preprint at (2023).
Magdău, I. B. et al. Machine learning force fields for molecular liquids: ethylene carbonate/ethyl methyl carbonate binary solvent. npj Comput. Mater. 9, 146 (2023).
Google Scholar
Montes-Campos, H., Carrete, J., Bichelmaier, S., Varela, L. M. & Madsen, G. K. H. A differentiable neural-network force field for ionic liquids. J. Chem. Inf. Model 62, 88–101 (2022).
Google Scholar
Wang, F. & Cheng, J. Understanding the solvation structures of glyme-based electrolytes by machine learning molecular dynamics. Chinese J. Struct. Chem. 42, 100061 (2023).
Google Scholar
Dajnowicz, S. et al. High-dimensional neural network potential for liquid electrolyte simulations. J. Phys. Chem. B 126, 08 (2022).
Google Scholar
Jacobson, L. et al. Transferable neural network potential energy surfaces for closed-shell organic molecules: extension to ions. J. Chem. Theory Comput. 18, 03 (2022).
Google Scholar
Fu, X. et al. Forces are not enough: benchmark and critical evaluation for machine learning force fields with molecular simulations. Trans. Mach. Learn. Res. (2023).
Ormeño, F. & General, I. Convergence and equilibrium in molecular dynamics simulations. Commun. Chem. 7, 02 (2024).
Google Scholar
Wang, X. et al. DMFF: an open-source automatic differentiable platform for molecular force field development and molecular dynamics simulation. J. Chem. Theory Comput. 19, 5897–5909 (2023).
Google Scholar
Greener, J. G. & Jones, D. T. Differentiable molecular simulation can learn all the parameters in a coarse-grained force field for proteins. PLoS ONE 16, e0256990 (2021).
Google Scholar
Asif, U., Tang, J. & Harrer, S. Ensemble knowledge distillation for learning improved and efficient network. In 24th European Conference on Artificial Intelligence (ECAI, 2020).
Chandler, D., Weeks, J. D. & Andersen, H. C. Van der Waals picture of liquids, solids, and phase transformations. Science 220, 787–794 (1983).
Google Scholar
Kontogeorgis, G. M., Maribo-Mogensen, B. & Thomsen, K. The Debye-Hückel theory and its importance in modeling electrolyte solutions. Fluid Ph. Equilib. 462, 130–152 (2018).
Google Scholar
Poier, P., Lagardère, L., Piquemal, J.-P. & Jensen, F. Molecular dynamics using nonvariational polarizable force fields: theory, periodic boundary conditions implementation, and application to the bond capacity model. J. Chem. Theory Comput. 2019, 09 (2019).
Schröder, H., Creon, A. & Schwabe, T. Reformulation of the D3(Becke–Johnson) dispersion correction without resorting to higher than C6 dispersion coefficients. J. Chem. Theory Comput. 11, 3163–3170 (2015).
Google Scholar
Torres-Sánchez, A., Vanegas, J. M. & Arroyo, M. Geometric derivation of the microscopic stress: a covariant central force decomposition. J. Mech. Phys. Solids 93, 224–239 (2016).
Google Scholar
Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems Vol. 30 (eds Guyon, I. et al.) (Curran, 2017).
Gong, S. et al. Examining graph neural networks for crystal structures: limitations and opportunities for capturing periodicity. Sci. Adv. 9, eadi3245 (2023).
Google Scholar
Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 271, 108171 (2022).
Google Scholar
Musaelian, A. et al. Learning local equivariant representations for large-scale atomistic dynamics. Nat. Commun. 14, 579 (2023).
Google Scholar
Wang, Y. et al. Enhancing geometric representations for molecules with equivariant vector-scalar interactive message passing. Nat. Commun. (2024).
Batatia, I., Kovacs, D. P., Simm, G., Ortner, C. & Csányi, G. MACE: higher order equivariant message passing neural networks for fast and accurate force fields. Adv. Neural Inf. Process. Syst. 35, 11423–11436 (2022).
Google Scholar
Pelaez, R. P. et al. TorchMD-Net 2.0: fast neural network potentials for molecular simulations. Preprint at (2024).
Martius, G. & Lampert, C. H. Extrapolation and learning equations. In Proc. 35th International Conference on Machine Learning (PMLR, 2018).
Dave, A. R. Automated Design and Discovery of Liquid Electrolytes for Lithium-Ion Batteries. PhD thesis, Carnegie Mellon Univ. (2023).
Hagiyama, K. et al. Physical properties of substituted 1,3-dioxolan-2-ones. Chem. Lett. 37, 210–211 (2008).
Google Scholar
Sasaki, Y. in Fluorinated Materials for Energy Conversion (eds Nakajima, T. & Groult, H.) 285–304 (Elsevier Science, 2005).
Jänes, A., Thomberg, T., Eskusson, J. & Lust, E. Fluoroethylene carbonate and propylene carbonate mixtures based electrolytes for supercapacitors. ECS Trans. 58, 71 (2014).
Google Scholar
Gores, H. J. et al. in Handbook of Battery Materials 525–626 (John Wiley & Sons, 2011).
Dave, A. et al. Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling. Nat. Commun. 13, 5454 (2022).
Google Scholar
Logan, E. R. et al. A study of the transport properties of ethylene carbonate-free Li electrolytes. J. Electrochem. Soc. 165, A705–A716 (2018).
Google Scholar
Zhu, S. et al. Differentiable modeling and optimization of non-aqueous Li-based battery electrolyte solutions using geometric deep learning. Nat. Commun. 15, 8649 (2024).
Google Scholar
Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).
Google Scholar
Zheng, T. et al. Data-driven parametrization of molecular mechanics force fields for expansive chemical space coverage. Chem. Sci. 16, 2730–2740 (2025).
Google Scholar
Niblett, S. P., Kourtis, P., Magdău, I. B., Grey, C. P. & Csányi, G. Transferability of datasets between machine-learning interaction potentials. Preprint at (2024).
Zhang, H., Juraskova, V. & Duarte, F. Modelling chemical processes in explicit solvents with machine learning potentials. Nat. Commun. 15, 6114 (2024).
Google Scholar
Lei Ba, J., Kiros, J. R. & Hinton, G. E. Layer normalization. Preprint at (2016).
Breneman, C. M. & Wiberg, K. B. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11, 361–373 (1990).
Google Scholar
Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019).
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at (2017).
Becke, A. D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
Google Scholar
Hellweg, A. & Rappoport, D. Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations. Phys. Chem. Chem. Phys. 17, 1010–1017 (2015).
Google Scholar
Weigend, F. Hartree–Fock exchange fitting basis sets for H to Rn. J. Comput. Chem. 29, 167–175 (2008).
Google Scholar
Wu, X. et al. Python-based quantum chemistry calculations with GPU acceleration. Preprint at (2024).
Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).
Google Scholar
Mistry, A., Yu, Z., Cheng, L. & Srinivasan, V. On relative importance of vehicular and structural motions in defining electrolyte transport. J. Electrochem. Soc. 170, 110536 (2023).
Google Scholar
Mu, Z. mzl/bamboo. Hugging Face (2025).
Mu, Z. muzhenliang/bamboo: v0.1. Zenodo (2025).
Simeon, G. & De Fabritiis, G. TensorNet: Cartesian tensor representations for efficient learning of molecular potentials. Adv. Neural Inf. Process. Syst. 36, 37334–37353 (2024).
Google Scholar
link