A predictive machine learning force-field framework for liquid electrolyte development

A predictive machine learning force-field framework for liquid electrolyte development

  • Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    Article 
    MATH 

    Google Scholar 

  • Xu, K. Electrolytes, Interfaces and Interphases: Fundamentals and Applications in Batteries (Royal Society of Chemistry, 2023).

  • Meng, Y. S., Srinivasan, V. & Xu, K. Designing better electrolytes. Science 378, eabq3750 (2022).

    Article 

    Google Scholar 

  • Unke, O. T. et al. Machine learning force fields. Chem. Rev. 121, 10142–10186 (2021).

    Article 

    Google Scholar 

  • Frenkel, D. & Smit, B. Understanding Molecular Simulation: From Algorithms To Applications (Elsevier, 2023).

  • Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article 
    MATH 

    Google Scholar 

  • Zhang, L., Han, J., Wang, H., Car, R. & E, W. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).

    Article 
    MATH 

    Google Scholar 

  • Lysogorskiy, Y. et al. Performant implementation of the atomic cluster expansion (PACE) and application to copper and silicon. npj Comput. Mater. 7, 97 (2021).

    Article 

    Google Scholar 

  • Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A. & Müller, K.-R. SchNet—a deep learning architecture for molecules and materials. J. Chem. Phys. 148, 241722 (2018).

    Article 
    MATH 

    Google Scholar 

  • Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13, 2453 (2022).

    Article 
    MATH 

    Google Scholar 

  • Liao, Y.-L. & Smidt, T. Equiformer: equivariant graph attention transformer for 3D atomistic graphs. In Proc. Eleventh International Conference on Learning Representations (ICLR, 2023).

  • Thölke, P. & De Fabritiis, G. TorchMD-NET: equivariant transformers for neural network based molecular potentials. In Proc. Tenth International Conference on Learning Representations (ICLR, 2022).

  • Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nat. Commun. 12, 398 (2021).

    Article 

    Google Scholar 

  • Zhang, L. et al. A deep potential model with long-range electrostatic interactions. J. Chem. Phys. 156, 124107 (2022).

    Article 
    MATH 

    Google Scholar 

  • Anstine, D., Zubatyuk, R. & Isayev, O. AIMNet2: a neural network potential to meet your neutral, charged, organic, and elemental-organic needs. Preprint at ChemRxiv (2023).

  • Unke, O. & Meuwly, M. PhysNet: a neural network for predicting energies, forces, dipole moments and partial charges. J. Chem. Theory Comput. 15, 3678–3693 (2019).

    Article 

    Google Scholar 

  • Unke, O. et al. SpookyNet: learning force fields with electronic degrees of freedom and nonlocal effects. Nat. Commun. 12, 12 (2021).

    Article 

    Google Scholar 

  • Yu, H. et al. Spin-dependent graph neural network potential for magnetic materials. Phys. Rev. B 109, 144426 (2023).

  • Chen, C. & Ong, S. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).

    Article 
    MATH 

    Google Scholar 

  • Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).

    Article 
    MATH 

    Google Scholar 

  • Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

    Article 
    MATH 

    Google Scholar 

  • Zhang, D. et al. DPA-2: towards a universal large atomic model for molecular and material simulation. npj Comput. Mater. (2024).

  • Batatia, I. et al. A foundation model for atomistic materials chemistry. Preprint at (2024).

  • Kovács, D. P. et al. MACE-OFF23: transferable machine learning force fields for organic molecules. Preprint at (2023).

  • Wang, H. & Yang, W. Force field for water based on neural network. J. Phys. Chem. Lett. 9, 3232–3240 (2018).

    Article 
    MATH 

    Google Scholar 

  • Zhang, J., Pagotto, J., Gould, T. & Duignan, T. T. Accurate, fast and generalisable first principles simulation of aqueous lithium chloride. Preprint at (2023).

  • Magdău, I. B. et al. Machine learning force fields for molecular liquids: ethylene carbonate/ethyl methyl carbonate binary solvent. npj Comput. Mater. 9, 146 (2023).

    Article 

    Google Scholar 

  • Montes-Campos, H., Carrete, J., Bichelmaier, S., Varela, L. M. & Madsen, G. K. H. A differentiable neural-network force field for ionic liquids. J. Chem. Inf. Model 62, 88–101 (2022).

    Article 

    Google Scholar 

  • Wang, F. & Cheng, J. Understanding the solvation structures of glyme-based electrolytes by machine learning molecular dynamics. Chinese J. Struct. Chem. 42, 100061 (2023).

    Article 
    MATH 

    Google Scholar 

  • Dajnowicz, S. et al. High-dimensional neural network potential for liquid electrolyte simulations. J. Phys. Chem. B 126, 08 (2022).

    Article 
    MATH 

    Google Scholar 

  • Jacobson, L. et al. Transferable neural network potential energy surfaces for closed-shell organic molecules: extension to ions. J. Chem. Theory Comput. 18, 03 (2022).

    Article 
    MATH 

    Google Scholar 

  • Fu, X. et al. Forces are not enough: benchmark and critical evaluation for machine learning force fields with molecular simulations. Trans. Mach. Learn. Res. (2023).

  • Ormeño, F. & General, I. Convergence and equilibrium in molecular dynamics simulations. Commun. Chem. 7, 02 (2024).

    Article 
    MATH 

    Google Scholar 

  • Wang, X. et al. DMFF: an open-source automatic differentiable platform for molecular force field development and molecular dynamics simulation. J. Chem. Theory Comput. 19, 5897–5909 (2023).

    Article 
    MATH 

    Google Scholar 

  • Greener, J. G. & Jones, D. T. Differentiable molecular simulation can learn all the parameters in a coarse-grained force field for proteins. PLoS ONE 16, e0256990 (2021).

    Article 
    MATH 

    Google Scholar 

  • Asif, U., Tang, J. & Harrer, S. Ensemble knowledge distillation for learning improved and efficient network. In 24th European Conference on Artificial Intelligence (ECAI, 2020).

  • Chandler, D., Weeks, J. D. & Andersen, H. C. Van der Waals picture of liquids, solids, and phase transformations. Science 220, 787–794 (1983).

    Article 

    Google Scholar 

  • Kontogeorgis, G. M., Maribo-Mogensen, B. & Thomsen, K. The Debye-Hückel theory and its importance in modeling electrolyte solutions. Fluid Ph. Equilib. 462, 130–152 (2018).

    Article 
    MATH 

    Google Scholar 

  • Poier, P., Lagardère, L., Piquemal, J.-P. & Jensen, F. Molecular dynamics using nonvariational polarizable force fields: theory, periodic boundary conditions implementation, and application to the bond capacity model. J. Chem. Theory Comput. 2019, 09 (2019).

    Google Scholar 

  • Schröder, H., Creon, A. & Schwabe, T. Reformulation of the D3(Becke–Johnson) dispersion correction without resorting to higher than C6 dispersion coefficients. J. Chem. Theory Comput. 11, 3163–3170 (2015).

    Article 
    MATH 

    Google Scholar 

  • Torres-Sánchez, A., Vanegas, J. M. & Arroyo, M. Geometric derivation of the microscopic stress: a covariant central force decomposition. J. Mech. Phys. Solids 93, 224–239 (2016).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems Vol. 30 (eds Guyon, I. et al.) (Curran, 2017).

  • Gong, S. et al. Examining graph neural networks for crystal structures: limitations and opportunities for capturing periodicity. Sci. Adv. 9, eadi3245 (2023).

    Article 

    Google Scholar 

  • Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 271, 108171 (2022).

    Article 
    MATH 

    Google Scholar 

  • Musaelian, A. et al. Learning local equivariant representations for large-scale atomistic dynamics. Nat. Commun. 14, 579 (2023).

    Article 
    MATH 

    Google Scholar 

  • Wang, Y. et al. Enhancing geometric representations for molecules with equivariant vector-scalar interactive message passing. Nat. Commun. (2024).

  • Batatia, I., Kovacs, D. P., Simm, G., Ortner, C. & Csányi, G. MACE: higher order equivariant message passing neural networks for fast and accurate force fields. Adv. Neural Inf. Process. Syst. 35, 11423–11436 (2022).

    MATH 

    Google Scholar 

  • Pelaez, R. P. et al. TorchMD-Net 2.0: fast neural network potentials for molecular simulations. Preprint at (2024).

  • Martius, G. & Lampert, C. H. Extrapolation and learning equations. In Proc. 35th International Conference on Machine Learning (PMLR, 2018).

  • Dave, A. R. Automated Design and Discovery of Liquid Electrolytes for Lithium-Ion Batteries. PhD thesis, Carnegie Mellon Univ. (2023).

  • Hagiyama, K. et al. Physical properties of substituted 1,3-dioxolan-2-ones. Chem. Lett. 37, 210–211 (2008).

    Article 

    Google Scholar 

  • Sasaki, Y. in Fluorinated Materials for Energy Conversion (eds Nakajima, T. & Groult, H.) 285–304 (Elsevier Science, 2005).

  • Jänes, A., Thomberg, T., Eskusson, J. & Lust, E. Fluoroethylene carbonate and propylene carbonate mixtures based electrolytes for supercapacitors. ECS Trans. 58, 71 (2014).

    Article 

    Google Scholar 

  • Gores, H. J. et al. in Handbook of Battery Materials 525–626 (John Wiley & Sons, 2011).

  • Dave, A. et al. Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling. Nat. Commun. 13, 5454 (2022).

    Article 
    MATH 

    Google Scholar 

  • Logan, E. R. et al. A study of the transport properties of ethylene carbonate-free Li electrolytes. J. Electrochem. Soc. 165, A705–A716 (2018).

    Article 
    MATH 

    Google Scholar 

  • Zhu, S. et al. Differentiable modeling and optimization of non-aqueous Li-based battery electrolyte solutions using geometric deep learning. Nat. Commun. 15, 8649 (2024).

    Article 
    MATH 

    Google Scholar 

  • Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article 

    Google Scholar 

  • Zheng, T. et al. Data-driven parametrization of molecular mechanics force fields for expansive chemical space coverage. Chem. Sci. 16, 2730–2740 (2025).

    Article 
    MATH 

    Google Scholar 

  • Niblett, S. P., Kourtis, P., Magdău, I. B., Grey, C. P. & Csányi, G. Transferability of datasets between machine-learning interaction potentials. Preprint at (2024).

  • Zhang, H., Juraskova, V. & Duarte, F. Modelling chemical processes in explicit solvents with machine learning potentials. Nat. Commun. 15, 6114 (2024).

    Article 
    MATH 

    Google Scholar 

  • Lei Ba, J., Kiros, J. R. & Hinton, G. E. Layer normalization. Preprint at (2016).

  • Breneman, C. M. & Wiberg, K. B. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11, 361–373 (1990).

    Article 

    Google Scholar 

  • Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019).

  • Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at (2017).

  • Becke, A. D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article 
    MATH 

    Google Scholar 

  • Hellweg, A. & Rappoport, D. Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations. Phys. Chem. Chem. Phys. 17, 1010–1017 (2015).

    Article 

    Google Scholar 

  • Weigend, F. Hartree–Fock exchange fitting basis sets for H to Rn. J. Comput. Chem. 29, 167–175 (2008).

    Article 
    MATH 

    Google Scholar 

  • Wu, X. et al. Python-based quantum chemistry calculations with GPU acceleration. Preprint at (2024).

  • Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).

    Article 
    MATH 

    Google Scholar 

  • Mistry, A., Yu, Z., Cheng, L. & Srinivasan, V. On relative importance of vehicular and structural motions in defining electrolyte transport. J. Electrochem. Soc. 170, 110536 (2023).

    Article 

    Google Scholar 

  • Mu, Z. mzl/bamboo. Hugging Face (2025).

  • Mu, Z. muzhenliang/bamboo: v0.1. Zenodo (2025).

  • Simeon, G. & De Fabritiis, G. TensorNet: Cartesian tensor representations for efficient learning of molecular potentials. Adv. Neural Inf. Process. Syst. 36, 37334–37353 (2024).

    MATH 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *