A systematic map of machine learning for urban climate change mitigation

A systematic map of machine learning for urban climate change mitigation

  • Lwasa, S. et al. Urban systems and other settlements. In Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambrige Univ. Press, 2022).

  • Shukla, P. et al (eds). Climate Change 2022: Mitigation of Climate Change (Cambridge Univ. Press, 2022).

  • Sethi, M., Lamb, W., Minx, J. & Creutzig, F. Climate change mitigation in cities: a systematic scoping of case studies. Environ. Res. Lett. 15, 093008 (2020).

    Article 

    Google Scholar 

  • Kaack, L. H. et al. Aligning artificial intelligence with climate change mitigation. Nat. Clim. Change 12, 518–527 (2022).

    Article 

    Google Scholar 

  • Rolnick, D. et al. Tackling climate change with machine learning. ACM Comput. Surveys 55, 1–96 (2022).

    Article 

    Google Scholar 

  • Milojevic-Dupont, N. & Creutzig, F. Machine learning for geographically differentiated climate change mitigation in urban areas. Sustain. Cities Soc. 64, 102526 (2021).

    Article 

    Google Scholar 

  • Kim, H. et al. A systematic review of the smart energy conservation system: from smart homes to sustainable smart cities. Renew. Sustain. Energy Rev. 140, 110755 (2021).

    Article 

    Google Scholar 

  • Lai, C. S. et al. A review of technical standards for smart cities. Clean Technol. 2, 290–310 (2020).

    Article 

    Google Scholar 

  • Pereira, G. V., Parycek, P., Falco, E. & Kleinhans, R. Smart governance in the context of smart cities: a literature review. Inform. Polity 23, 143–162 (2018).

    Article 

    Google Scholar 

  • Gracias, J. S., Parnell, G. S., Specking, E., Pohl, E. A. & Buchanan, R. Smart cities–a structured literature review. Smart Cities 6, 1719–1743 (2023).

    Article 

    Google Scholar 

  • Casali, Y., Aydin, N. Y. & Comes, T. Machine learning for spatial analyses in urban areas: a scoping review. Sustain. Cities Soc. 85, 104050 (2022).

    Article 

    Google Scholar 

  • Haddaway, N. R., Bernes, C., Jonsson, B.-G. & Hedlund, K. The benefits of systematic mapping to evidence-based environmental management. Ambio 45, 613–620 (2016).

    Article 

    Google Scholar 

  • Haddaway, N., Macura, B., Whaley, P. & Pullin, A. ROSES flow diagram for systematic reviews, version 1.0. Figshare (2018).

  • James, K. L., Randall, N. P. & Haddaway, N. R. A methodology for systematic mapping in environmental sciences. Environ. Evidence 5, 1–13 (2016).

    Article 

    Google Scholar 

  • Lamb, W. F., Callaghan, M. W., Creutzig, F., Khosla, R. & Minx, J. C. The literature landscape on 1.5 C climate change and cities. Curr. Opin. Environ. Sustain. 30, 26–34 (2018).

    Article 

    Google Scholar 

  • Sethi, M. & Creutzig, F. Leaders or laggards in climate action? Assessing GHG trends and mitigation targets of global megacities. PLOS Clim. 2, e0000113 (2023).

    Article 

    Google Scholar 

  • Li, X. et al. Short-term forecast of bicycle usage in bike sharing systems: a spatial-temporal memory network. IEEE Trans. Intell. Transp. Syst. 23, 10923–10934 (2021).

    Article 

    Google Scholar 

  • Yusuf, J., Hasan, A. J., Garrido, J., Ula, S. & Barth, M. J. A comparative techno-economic assessment of bidirectional heavy duty and light duty plug-in electric vehicles operation: a case study. Sustain. Cities Soc. 95, 104582 (2023).

    Article 

    Google Scholar 

  • Aziz, H. A., Zhu, F. & Ukkusuri, S. V. Learning-based traffic signal control algorithms with neighborhood information sharing: an application for sustainable mobility. J. Intell. Transp. Syst. 22, 40–52 (2018).

    Article 

    Google Scholar 

  • Seyrfar, A., Ataei, H., Movahedi, A. & Derrible, S. Data-driven approach for evaluating the energy efficiency in multifamily residential buildings. Pract. Periodical Struct. Des. Constr. 26, 04020074 (2021).

    Article 

    Google Scholar 

  • Zhang, J. et al. The Traj2Vec model to quantify residents’ spatial trajectories and estimate the proportions of urban land-use types. Int. J. Geogr. Inform. Sci. 35, 193–211 (2021).

    Article 

    Google Scholar 

  • Nutkiewicz, A., Mastrucci, A., Rao, N. D. & Jain, R. K. Cool roofs can mitigate cooling energy demand for informal settlement dwellers. Renew. Sustain. Energy Rev. 159, 112183 (2022).

    Article 

    Google Scholar 

  • Linton, S., Clarke, A. & Tozer, L. Technical pathways to deep decarbonization in cities: eight best practice case studies of transformational climate mitigation. Energy Res. Soc. Sci. 86, 102422 (2022).

    Article 

    Google Scholar 

  • Verbeek, A. & Lundqvist, M. Artificial Intelligence, Blockchain and the Future of Europe: How Disruptive Technologies Create Opportunities for a Green and Digital Economy, Technical Report (European Investment Bank, 2021).

  • Maslej, N. et al. The AI Index 2023 Annual Report, Technical Report (Institute for Human-Centered AI, Stanford University, 2023).

  • Kitsara, I. Artificial Intelligence and the Digital Divide: From an Innovation Perspective. In Platforms and Artificial Intelligence: The Next Generation of Competences (ed. Bounfour, A.) 245–265 (Springer, 2022).

  • Hao, X., Zhou, Y., Wang, H. & Ouyang, M. Plug-in electric vehicles in China and the USA: a technology and market comparison. Mitig. Adapt. Strateg. Glob. Change 25, 329–353 (2020).

    Article 

    Google Scholar 

  • Ugarteche, O., de León, C. & García, J. China and the energy matrix in Latin America: governance and geopolitical perspective. Energy Policy 177, 113435 (2023).

    Article 

    Google Scholar 

  • A Renovation Wave for Europe—Greening our Buildings, Creating Jobs, Improving Lives, Technical Report (European Commission, 2020).

  • Bakó, F., Berkes, J. & Szigeti, C. Households’ electricity consumption in Hungarian urban areas. Energies 14, 2899 (2021).

    Article 

    Google Scholar 

  • Stensjö, I. P., Ferreira, C. C. & Loura, R. M. Classification and grouping of Brazilian cities in heating and cooling degrees-day: 1960 to 2013. Urbe Rev. Brasil. de Gestão Urbana 9, 286–300 (2017).

    Article 

    Google Scholar 

  • Praene, J. P., Malet-Damour, B., Radanielina, M. H., Fontaine, L. & Riviere, G. GIS-based approach to identify climatic zoning: a hierarchical clustering on principal component analysis. Build. Environ. 164, 106330 (2019).

    Article 

    Google Scholar 

  • Wu, T.-G. et al. Identifying low-PM2.5 exposure commuting routes for cyclists through modeling with the random forest algorithm based on low-cost sensor measurements in three Asian cities. Environ. Pollut. 294, 118597 (2022).

    Article 

    Google Scholar 

  • Palme, M., Inostroza, L. & Salvati, A. Technomass and cooling demand in South America: a superlinear relationship? Build. Res. Inform. 46, 864–880 (2018).

    Article 

    Google Scholar 

  • Petropoulos, G. P., Kalivas, D. P., Georgopoulou, I. A. & Srivastava, P. K. Urban vegetation cover extraction from hyperspectral imagery and geographic information system spatial analysis techniques: case of Athens, Greece. J. Appl. Remote Sens. 9, 096088 (2015).

    Article 

    Google Scholar 

  • Li, X. et al. Developing urban residential reference buildings using clustering analysis of satellite images. Energy Build. 169, 417–429 (2018).

    Article 

    Google Scholar 

  • Yigit, S. A machine-learning-based method for thermal design optimization of residential buildings in highly urbanized areas of Turkey. J. Build. Eng. 38, 102225 (2021).

    Article 

    Google Scholar 

  • Adeogba, E., Barty, P., O’Dwyer, E. & Guo, M. Waste-to-resource transformation: gradient boosting modeling for organic fraction municipal solid waste projection. ACS Sustain. Chem. Eng. 7, 10460–10466 (2019).

    Article 

    Google Scholar 

  • Jiang, F., Ma, J. & Li, Z. Pedestrian volume prediction with high spatiotemporal granularity in urban areas by the enhanced learning model. Sustain. Cities Soc. 79, 103653 (2022).

    Article 

    Google Scholar 

  • Manchella, K., Umrawal, A. K. & Aggarwal, V. Flexpool: a distributed model-free deep reinforcement learning algorithm for joint passengers and goods transportation. IEEE Trans. Intell. Transp. Syst. 22, 2035–2047 (2021).

    Article 

    Google Scholar 

  • Lork, C. et al. An uncertainty-aware deep reinforcement learning framework for residential air conditioning energy management. Appl. Energy 276, 115426 (2020).

    Article 

    Google Scholar 

  • Tien, P. W., Wei, S., Darkwa, J., Wood, C. & Calautit, J. K. Machine learning and deep learning methods for enhancing building energy efficiency and indoor environmental quality—a review. Energy AI 10, 100198 (2022).

    Article 

    Google Scholar 

  • Campbell-Arvai, V. & Lindquist, M. From the ground up: using structured community engagement to identify objectives for urban green infrastructure planning. Urban For. Urban Green. 59, 127013 (2021).

    Article 

    Google Scholar 

  • Ntakolia, C., Anagnostis, A., Moustakidis, S. & Karcanias, N. Machine learning applied on the district heating and cooling sector: a review. Energy Syst. 13, 1–30 (2022).

    Article 

    Google Scholar 

  • Rong, K. & Luo, Y. Toward born sharing: the sharing economy evolution enabled by the digital ecosystems. Technol. Forecast. Soc. Change 196, 122776 (2023).

    Article 

    Google Scholar 

  • Adler, P. & Florida, R. The rise of urban tech: how innovations for cities come from cities. Reg. Stud. 55, 1787–1800 (2021).

    Article 

    Google Scholar 

  • Albuquerque, V., Sales Dias, M. & Bacao, F. Machine learning approaches to bike-sharing systems: a systematic literature review. ISPRS Int. J. Geo-Inform. 10, 62 (2021).

    Article 

    Google Scholar 

  • Shaygan, M., Meese, C., Li, W., Zhao, X. G. & Nejad, M. Traffic prediction using artificial intelligence: review of recent advances and emerging opportunities. Transp. Res. C 145, 103921 (2022).

    Article 

    Google Scholar 

  • Font Vivanco, D. et al. Rebound effect and sustainability science: a review. J. Ind. Ecol. 26, 1543–1563 (2022).

    Article 

    Google Scholar 

  • Sovacool, B. K., Newell, P., Carley, S. & Fanzo, J. Equity, technological innovation and sustainable behaviour in a low-carbon future. Nat. Hum. Behav. 6, 326–337 (2022).

    Article 

    Google Scholar 

  • McMillan, L. & Varga, L. A review of the use of artificial intelligence methods in infrastructure systems. Eng. Appl. Artif. Intell. 116, 105472 (2022).

    Article 

    Google Scholar 

  • Taiwo, R., Ben Seghier, M. E. A. & Zayed, T. Toward sustainable water infrastructure: the state-of-the-art for modeling the failure probability of water pipes. Water Resour. Res. 59, e2022WR033256 (2023).

    Article 

    Google Scholar 

  • Burley Farr, K., Song, K., Yeo, Z. Y., Johnson, E. & Hsu, A. Cities and regions tackle climate change mitigation but often focus on less effective solutions. Commun. Earth Environ. 4, 439 (2023).

    Article 

    Google Scholar 

  • Chen, S. & Jia, K. How local governments prioritize multiple conflicting goals: beyond the sole-goal perspective. Public Admin. 101, 522–538 (2023).

    Article 

    Google Scholar 

  • Meena, M. et al. Municipal solid waste: Opportunities, challenges and management policies in India: a review. Waste Manag. Bull. 1, 4–18 (2023).

    Article 

    Google Scholar 

  • Moroni, S. & Chiffi, D. Uncertainty and planning: cities, technologies and public decision-making. Perspect. Sci. 30, 237–259 (2022).

    Article 

    Google Scholar 

  • Bright, J. et al. Generative AI is already widespread in the public sector: evidence from a survey of UK public sector professionals. Digit. Gov.: Res. Pract. 6, 1–13 (2025).

    Article 

    Google Scholar 

  • Zhu, D. & Liu, H. City AI: a strategic framework for urban artificial intelligence application and development. Urban Informatics 4, 1–14 (2025).

    Article 

    Google Scholar 

  • Li, Z. et al. Urban computing in the era of large language models. Preprint at (2025).

  • Luccioni, S., Jernite, Y. & Strubell, E. Power hungry processing: watts driving the cost of AI deployment? In Proc. 2024 ACM Conference on Fairness, Accountability, and Transparency 85–99 (Association for Computing Machinery, 2024).

  • Dodge, J. et al. Measuring the carbon intensity of AI in cloud instances. In Proc. 2022 ACM Conference on Fairness, Accountability, and Transparency 1877–1894 (Association for Computing Machinery, 2022).

  • Zhao, F., Fashola, O. I., Olarewaju, T. I. & Onwumere, I. Smart city research: a holistic and state-of-the-art literature review. Cities 119, 103406 (2021).

    Article 

    Google Scholar 

  • João, B., Nascimento, D., Souza, C. L. D. & Serralvo, F. A. A systematic review of smart cities and the internet of things as a research topic. Cadernos EBAPE.BR. 17, 1115–1130 (2020).

    Google Scholar 

  • Pasgaard, M. & Strange, N. A quantitative analysis of the causes of the global climate change research distribution. Glob. Environ. Change 23, 1684–1693 (2013).

    Article 

    Google Scholar 

  • Tennant, J. P. Web of Science and Scopus are not global databases of knowledge. Eur. Sci. Edit. 46, e51987 (2020).

    Article 

    Google Scholar 

  • Asubiaro, T., Onaolapo, S. & Mills, D. Regional disparities in Web of Science and Scopus journal coverage. Scientometrics 129, 1469–1491 (2024).

    Article 

    Google Scholar 

  • Boeing, G., Pilgram, C. & Lu, Y. Urban street network design and transport-related greenhouse gas emissions around the world. Transp. Res. D 127, 103961 (2024).

    Article 

    Google Scholar 

  • Xiao, C. S. et al. Design effects of cycle infrastructure changes: an exploratory analysis of cycle levels. Transp. Res. Interdisc. Perspect. 22, 100949 (2023).

    Google Scholar 

  • Oyedemi, T. D. Digital coloniality and ‘next billion users’: the political economy of Google Station in Nigeria. Inform. Commun. Soc. 24, 329–343 (2021).

    Article 

    Google Scholar 

  • Birhane, A. et al. The values encoded in machine learning research. In Proc. 2022 ACM Conference on Fairness, Accountability, and Transparency 173–184 (Association for Computing Machinery, 2022).

  • Birhane, A. Algorithmic colonization of Africa. SCRIPTed 17, 389 (2020).

    Article 

    Google Scholar 

  • Sietsma, A. J., Ford, J. D. & Minx, J. C. The next generation of machine learning for tracking adaptation texts. Nat. Clim. Change 14, 31–39 (2024).

    Article 

    Google Scholar 

  • Vinuesa, R. et al. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 11, 233 (2020).

    Article 

    Google Scholar 

  • Sculley, D. et al. Hidden technical debt in machine learning systems. In Advances in Neural Information Processing Systems 28 (eds Cortes C., Lawrence N., Lee D., Sugiyama M. & Garnett R.) (Curran Associates, Inc., 2015).

  • Bulkeley, H. Cities and the governing of climate change. Ann. Rev. Environ. Resour. 35, 229–253 (2010).

    Article 

    Google Scholar 

  • Jiang, W. Bike sharing usage prediction with deep learning: a survey. Neur. Comput. Appl. 34, 15369–15385 (2022).

    Article 

    Google Scholar 

  • Repke, T. & Callaghan, M. NACSOS-nexus: NLP assisted classification, synthesis and online screening with new and extended usage scenarios. Preprint at (2024).

  • Webersinke, N., Kraus, M., Bingler, J. & Leippold, M. ClimateBERT: a pretrained language model for climate-related text. In Proc. AAAI 2022 Fall Symposium: The Role of AI in Responding to Climate Challenges (2022); https://doi.org/10.48550/arXiv.2212.13631

  • Callaghan, M. & Müller-Hansen, F. Statistical stopping criteria for automated screening in systematic reviews. Syst. Rev. 9, 1–14 (2020).

    Article 

    Google Scholar 

  • Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001 (2020).

    Article 

    Google Scholar 

  • Standard country or area codes for statistical use. United Nations Statistics Division (2025).

  • Hamel, R. E. The dominance of English in the international scientific periodical literature and the future of language use in science. Aila Rev. 20, 53–71 (2007).

    Article 

    Google Scholar 

  • Petersen, K. & Gerken, J. M. On the road to interactive LLM-based systematic mapping studies. Inform. Softw. Technol. 178, 107611 (2025).

    Article 

    Google Scholar 

  • Losi, E., Manservigi, L., Spina, P. R. & Venturini, M. Data-driven approach for the detection of faults in district heating networks. Sustain. Energy Grids Netw. 38, 101355 (2024).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *