AI-empowered next-generation multiscale climate modelling for mitigation and adaptation

AI-empowered next-generation multiscale climate modelling for mitigation and adaptation

  • IPCC: Summary for Policymakers. In Climate Change 2023: Synthesis Report (eds Core Writing Team et al.) (Cambridge Univ. Press, 2023).

  • IPCC: Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  • IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Friedlingstein, P. et al. Global carbon budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).

  • Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 11 (Cambridge Univ. Press, 2021).

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 

    Google Scholar 

  • United Nations. Report of the Conference of the Parties on its 21st session, held in Paris from 30 November to 13 December 2015 (United Nations Digital Library, 2016).

  • Gutiérrez, J. M. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 2087–2138 (Cambridge Univ. Press, 2021).

  • Bock, L. et al. Quantifying progress across different CMIP phases with the ESMValTool. J. Geophys. Res. Atmos. 125, e2019JD032321 (2020).

    Article 

    Google Scholar 

  • Eyring, V. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 3 (Cambridge Univ. Press, 2021).

  • Lee, J.-Y. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 4 (Cambridge Univ. Press, 2021).

  • Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).

    Article 

    Google Scholar 

  • Zickfeld, K. et al. Net-zero approaches must consider earth system impacts to achieve climate goals. Nat. Clim. Change 13, 1298–1305 (2023).

    Article 

    Google Scholar 

  • Gentine, P., Eyring, V. & Beucler, T. in Deep Learning for the Earth Sciences (eds Camps-Valls, G. et al.) 307–314 (John Wiley & Sons, 2021).

  • Eyring, V. et al. Reflections and projections on a decade of climate science. Nat. Clim. Change 11, 279–285 (2021).

    Article 

    Google Scholar 

  • Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).

    Article 

    Google Scholar 

  • Heinze, C. et al. ESD reviews: climate feedbacks in the Earth system and prospects for their evaluation. Earth Syst. Dyn. 10, 379–452 (2019).

    Article 

    Google Scholar 

  • Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277 (2020).

    Article 

    Google Scholar 

  • Simpson, I. R. et al. The CESM2 single-forcing large ensemble and comparison to CESM1: implications for experimental design. J. Clim. 36, 5687–5711 (2023).

    Article 

    Google Scholar 

  • Schlund, M., Lauer, A., Gentine, P., Sherwood, S. C. & Eyring, V. Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6? Earth Syst. Dyn. 11, 1233–1258 (2020).

    Article 

    Google Scholar 

  • Ridder, N. N., Pitman, A. J. & Ukkola, A. M. Do CMIP6 climate models simulate global or regional compound events skillfully? Geophys. Res. Lett. 48, 2020–091152 (2021).

    Article 

    Google Scholar 

  • Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ’hot model’ problem. Nature 605, 26–29 (2022).

    Article 
    CAS 

    Google Scholar 

  • Boucher, O. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 571–658 (Cambridge Univ. Press, 2014).

  • Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

    Article 
    CAS 

    Google Scholar 

  • Stevens, B. et al. DYAMOND: the dnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Prog. Earth Planet. Sci. (2019).

  • Zhang, Y. et al. Large-eddy simulation of shallow cumulus over land: a composite case based on ARM long-term observations at its southern great plains site. J. Atmos. Sci. 74, 3229–3251 (2017).

    Article 

    Google Scholar 

  • Na, Y., Fu, Q. & Kodama, C. Precipitation probability and its future changes from a global cloud-resolving model and CMIP6 simulations. J. Geophys. Res. Atmos. 125, 2019–031926 (2020).

    Article 

    Google Scholar 

  • Shamekh, S., Lamb, K. D., Huang, Y. & Gentine, P. Implicit learning of convective organization explains precipitation stochasticity. Proc. Natl Acad. Sci. USA 120, 2216158120 (2023).

    Article 

    Google Scholar 

  • Rasp, S., Pritchard, M. S. & Gentine, P. Deep learning to represent subgrid processes in climate models. Proc. Natl Acad. Sci. USA 115, 9684–9689 (2018).

    Article 
    CAS 

    Google Scholar 

  • Mauritsen, T. et al. Tuning the climate of a global model. J. Adv. Model. Earth Syst. (2012).

  • Yoshikane, T. & Yoshimura, K. A downscaling and bias correction method for climate model ensemble simulations of local-scale hourly precipitation. Sci. Rep. (2023).

  • Zängl, G., Reinert, D. & Prill, F. Grid refinement in ICON v2.6.4. Geosci. Model Dev. 15, 7153–7176 (2022).

    Article 

    Google Scholar 

  • Mariotti, A. et al. Envisioning U.S. climate predictions and projections to meet new challenges. Earth’s Future 12, e2023EF004187 (2024).

    Article 

    Google Scholar 

  • Häfner, D., Nuterman, R. & Jochum, M. Fast, cheap, and turbulent—global ocean modeling with GPU acceleration in Python. J. Adv. Model Earth Syst. 13, 2021–002717 (2021).

    Article 

    Google Scholar 

  • Dally, W. J., Keckler, S. W. & Kirk, D. B. Evolution of the graphics processing unit (GPU). IEEE Micro 41, 42–51 (2021).

    Article 

    Google Scholar 

  • Giorgetta, M. A. et al. The ICON-A model for direct QBO simulations on GPUs (version icon-cscs:baf28a514). Geosci. Model Dev. 15, 6985–7016 (2022).

    Article 

    Google Scholar 

  • Frostig, R., Johnson, M. J. & Leary, C. Compiling machine learning programs via high-level tracing. Syst. Mach. Learn. (2018).

  • Raschka, S., Patterson, J. & Nolet, C. Machine learning in Python: main developments and technology trends in data science, machine learning, and artificial intelligence. Information 11, 193 (2020).

    Article 

    Google Scholar 

  • Bradbury, J. et al. JAX: Composable Transformations of Python+NumPy Programs. GitHub (2018).

  • Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).

    Article 

    Google Scholar 

  • Sabne, A. XLA: compiling machine learning for peak performance. Google Research (2020).

  • Campagne, J.-E. et al. JAX–COSMO: An end-to-end differentiable and GPU accelerated cosmology library. Open J. Astrophys. (2023).

  • Xue, T. et al. JAX–FEM: a differentiable GPU-accelerated 3D finite element solver for automatic inverse design and mechanistic data science. Comput. Phys. Commun. 291, 108802 (2023).

    Article 
    CAS 

    Google Scholar 

  • Shen, C. et al. Differentiable modelling to unify machine learning and physical models for geosciences. Nat. Rev. Earth Environ. (2023).

  • Schoenholz, S. & Cubuk, E. D. JAX, M.D.: a framework for differentiable physics. Adv. Neural Inf. Process. Syst. 33, 11428–11441 (2020).

    Google Scholar 

  • Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kochkov, D. et al. Nature 632, 1060–1066 (2024).

  • Eyring, V. et al. Pushing the frontiers in climate modelling and analysis with machine learning. Nat. Clim. Change 14, 916–928 (2024).

    Article 

    Google Scholar 

  • Zhou, A., Hawkins, L. & Gentine, P. Proof-of-concept: using ChatGPT to translate and modernize an Earth system model from Fortran to Python/JAX. Preprint at (2024).

  • Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G. & Yacalis, G. Could machine learning break the convection parameterization deadlock? Geophys. Res. Lett. 45, 5742–5751 (2018).

    Article 

    Google Scholar 

  • Grundner, A. et al. Deep learning based cloud cover parameterization for ICON. J. Adv. Model. Earth Syst. 14, 2021–002959 (2022).

    Article 

    Google Scholar 

  • Zanna, L. & Bolton, T. Data-driven equation discovery of ocean mesoscale closures. Geophys. Res. Lett. 47, e2020GL088376 (2020).

    Article 

    Google Scholar 

  • Behrens, G. et al. Non-linear dimensionality reduction with a variational encoder decoder to understand convective processes in climate models. J. Adv. Model. Earth Syst. 14, 2022–003130 (2022).

    Article 

    Google Scholar 

  • Mooers, G. et al. Comparing storm resolving models and climates via unsupervised machine learning. Sci. Rep. 13, 22365 (2023).

    Article 
    CAS 

    Google Scholar 

  • Yuval, J., O’Gorman, P. A. & Hill, C. N. Use of neural networks for stable, accurate and physically consistent parameterization of subgrid atmospheric processes with good performance at reduced precision. Geophys. Res. Lett. 48, e2020GL091363 (2021).

    Article 

    Google Scholar 

  • Bretherton, C. S. et al. Correcting coarse-grid weather and climate models by machine learning from global storm-resolving simulations. J. Adv. Model. Earth Syst. 14, e2021MS002794 (2022).

    Article 

    Google Scholar 

  • Zhao, W. L. et al. Physics-constrained machine learning of evapotranspiration. Geophys. Res. Lett. 46, 14496–14507 (2019).

    Article 

    Google Scholar 

  • ElGhawi, R. et al. Hybrid modeling of evapotranspiration: inferring stomatal and aerodynamic resistances using combined physics-based and machine learning. Environ. Res. Lett. 18, 034039 (2023).

    Article 

    Google Scholar 

  • Tao, F. et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 618, 981–985 (2023).

    Article 
    CAS 

    Google Scholar 

  • Beucler, T., Ebert-Uphoff, I., Rasp, S., Pritchard, M. & Gentine, P. in Clouds and Their Climatic Impacts: Radiation, Circulation, and Precipitation (eds Sullivan, S. C. & Hoose, C.) Ch. 16 (John Wiley & Sons, 2023).

  • Beucler, T. et al. Enforcing analytic constraints in neural networks emulating physical systems. Phys. Rev. Lett. 126, 98302 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bhouri, M. A., Joly, M., Yu, R., Sarkar, S. & Perdikaris, P. Scalable Bayesian optimization with high-dimensional outputs using randomized prior networks. Preprint at (2023).

  • Brenowitz, N. D., Beucler, T., Pritchard, M. & Bretherton, C. S. Interpreting and stabilizing machine-learning parametrizations of convection. J. Atmos. Sci. 77, 4357–4375 (2020).

    Article 

    Google Scholar 

  • Iglesias-Suarez, F. et al. Causally-informed deep learning to improve climate models and projections. J. Geophys. Res. Atmos. 129, 2023–039202 (2024).

    Article 

    Google Scholar 

  • Grundner, A., Beucler, T., Gentine, P. & Eyring, V. Data-driven equation discovery of a cloud cover parameterization. J. Adv. Model. Earth Syst. 16, e2023MS003763 (2024).

    Article 

    Google Scholar 

  • Camps-Valls, G. et al. Discovering causal relations and equations from data. Phys. Rep. 1044, 1–68 (2023).

    Article 

    Google Scholar 

  • Fisher, R. A. & Koven, C. D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Adv. Model. Earth Syst. 12, e2018MS001453 (2020).

    Article 

    Google Scholar 

  • Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).

    Article 
    CAS 

    Google Scholar 

  • Cheng, S. et al. Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review. IEEE/CAA J. Autom. Sin. 10, 1361–1387 (2023).

    Article 

    Google Scholar 

  • Nathaniel, J. et al. ChaosBench: a multi-channel, physics-based benchmark for subseasonal-to-seasonal climate prediction. Preprint at (2024).

  • Yang, J. et al. Erratum: the role of satellite remote sensing in climate change studies. Nat. Clim. Change 4, 74 (2014).

    Article 

    Google Scholar 

  • Zhu, J. et al. LGM paleoclimate constraints inform cloud parameterizations and equilibrium climate sensitivity in CESM2. J. Adv. Model. Earth Syst. 14, e2021MS002776 (2022).

    Article 

    Google Scholar 

  • Hourdin, F. et al. The art and science of climate model tuning. Bull. Am. Meteorol. Soc. 98, 589–602 (2017).

    Article 

    Google Scholar 

  • Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).

    Article 

    Google Scholar 

  • Eyring, V. et al. Earth System Model Evaluation Tool (ESMValTool) v2.0—an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geosci. Model Dev. 13, 3383–3438 (2020).

    Article 
    CAS 

    Google Scholar 

  • Collier, N. et al. The International Land Model Benchmarking (ILAMB) system: design, theory, and implementation. J. Adv. Model. Earth Syst. 10, 2731–2754 (2018).

    Article 

    Google Scholar 

  • Courtier, P., Thépaut, J.-N. & Hollingsworth, A. A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc. 120, 1367–1387 (1994).

    Google Scholar 

  • Mardani, M. et al. Generative residual diffusion modeling for km-scale atmospheric downscaling. Preprint at arXiv (2023).

  • Brajard, J., Carrassi, A., Bocquet, M. & Bertino, L. Combining data assimilation and machine learning to infer unresolved scale parametrization. Phil. Trans. R. Soc. A 379, 20200086 (2021).

    Article 

    Google Scholar 

  • Chung, H., Sim, B., Ryu, D. & Ye, J. C. Improving diffusion models for inverse problems using manifold constraints. Adv. Neural Inf. Process. Syst. 35, 25683–25696 (2022).

    Google Scholar 

  • Buizza, C. et al. Data learning: integrating data assimilation and machine learning. J. Comput. Sci. 58, 101525 (2022).

    Article 

    Google Scholar 

  • Dagon, K., Sanderson, B. M., Fisher, R. A. & Lawrence, D. M. A machine learning approach to emulation and biophysical parameter estimation with the Community Land Model, version 5. Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 223–244 (2020).

    Article 

    Google Scholar 

  • Yang, B., Qian, Y., Lin, G., Leung, R. & Zhang, Y. Some issues in uncertainty quantification and parameter tuning: a case study of convective parameterization scheme in the WRF regional climate model. Atmos. Chem. Phys. 12, 2409–2427 (2012).

    Article 
    CAS 

    Google Scholar 

  • Hennig, P., Osborne, M. A. & Kersting, H. P. Probabilistic Numerics: Computation as Machine Learning (Cambridge Univ. Press, 2022).

  • Camps-Valls, G. et al. Physics-aware Gaussian processes in remote sensing. Appl. Soft Comput. 68, 69–82 (2018).

    Article 

    Google Scholar 

  • Liu, Z. et al. Carbon monitor, a near-realtime daily dataset of global CO2 emission from fossil fuel and cement production. Sci. Data 7, 392 (2020).

    Article 
    CAS 

    Google Scholar 

  • Terhaar, J., Frolicher, T. L., Aschwanden, M. T., Friedlingstein, P. & Joos, F. Adaptive emission reduction approach to reach any global warming target. Nat. Clim. Change 12, 1136–1142 (2022).

    Article 

    Google Scholar 

  • O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article 

    Google Scholar 

  • Watson-Parris, D. et al. ClimateBench v1. 0: a benchmark for data-driven climate projections. J. Adv. Model. Earth Syst. 14, e2021MS002954 (2022).

    Article 

    Google Scholar 

  • Bauer, P., Stevens, B. & Hazeleger, W. A digital twin of Earth for the green transition. Nat. Clim. Change 11, 80–83 (2021).

    Article 

    Google Scholar 

  • Svendsen, D. H., Martino, L. & Camps-Valls, G. Active emulation of computer codes with Gaussian processes—application to remote sensing. Pattern Recognit. 100, 107103 (2020).

    Article 

    Google Scholar 

  • Runge, J., Gerhardus, A., Varando, G., Eyring, V. & Camps-Valls, G. Causal inference for time series. Nat. Rev. Earth Environ 4, 487–505 (2023).

    Article 

    Google Scholar 

  • Huang, L. & Hoefler, T. Compressing multidimensional weather and climate data into neural networks. Preprint at (2023).

  • Slingo, J. et al. Ambitious partnership needed for reliable climate prediction. Nat. Clim. Change 12, 499–503 (2022).

    Article 

    Google Scholar 

  • Stevens, B. et al. Earth virtualization engines (EVE). Earth Syst. Sci. Data 16, 2113–2122 (2024).

    Article 

    Google Scholar 

  • Roe, S. et al. Land-based measures to mitigate climate change: potential and feasibility by country. Glob. Change Biol. 27, 6025–6058 (2021).

    Article 
    CAS 

    Google Scholar 

  • Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article 
    CAS 

    Google Scholar 

  • Schuur, E. A. G. et al. Permafrost and climate change: carbon cycle feedbacks from the warming Arctic. Annu. Rev. Environ. Resour. 47, 343–371 (2022).

    Article 

    Google Scholar 

  • Fasullo, J. T. et al. Coupled climate responses to recent Australian wildfire and COVID-19 emissions anomalies estimated in CESM2. Geophys. Res. Lett. 48, 2021–093841 (2021).

    Article 

    Google Scholar 

  • Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359, 8328 (2018).

    Article 

    Google Scholar 

  • Steffen, W. et al. The emergence and evolution of Earth system science. Nat. Rev. Earth Environ. 1, 54–63 (2020).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *