IPCC: Summary for Policymakers. In Climate Change 2023: Synthesis Report (eds Core Writing Team et al.) (Cambridge Univ. Press, 2023).
IPCC: Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Friedlingstein, P. et al. Global carbon budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).
Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 11 (Cambridge Univ. Press, 2021).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Google Scholar
United Nations. Report of the Conference of the Parties on its 21st session, held in Paris from 30 November to 13 December 2015 (United Nations Digital Library, 2016).
Gutiérrez, J. M. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 2087–2138 (Cambridge Univ. Press, 2021).
Bock, L. et al. Quantifying progress across different CMIP phases with the ESMValTool. J. Geophys. Res. Atmos. 125, e2019JD032321 (2020).
Google Scholar
Eyring, V. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 3 (Cambridge Univ. Press, 2021).
Lee, J.-Y. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 4 (Cambridge Univ. Press, 2021).
Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).
Google Scholar
Zickfeld, K. et al. Net-zero approaches must consider earth system impacts to achieve climate goals. Nat. Clim. Change 13, 1298–1305 (2023).
Google Scholar
Gentine, P., Eyring, V. & Beucler, T. in Deep Learning for the Earth Sciences (eds Camps-Valls, G. et al.) 307–314 (John Wiley & Sons, 2021).
Eyring, V. et al. Reflections and projections on a decade of climate science. Nat. Clim. Change 11, 279–285 (2021).
Google Scholar
Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).
Google Scholar
Heinze, C. et al. ESD reviews: climate feedbacks in the Earth system and prospects for their evaluation. Earth Syst. Dyn. 10, 379–452 (2019).
Google Scholar
Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277 (2020).
Google Scholar
Simpson, I. R. et al. The CESM2 single-forcing large ensemble and comparison to CESM1: implications for experimental design. J. Clim. 36, 5687–5711 (2023).
Google Scholar
Schlund, M., Lauer, A., Gentine, P., Sherwood, S. C. & Eyring, V. Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6? Earth Syst. Dyn. 11, 1233–1258 (2020).
Google Scholar
Ridder, N. N., Pitman, A. J. & Ukkola, A. M. Do CMIP6 climate models simulate global or regional compound events skillfully? Geophys. Res. Lett. 48, 2020–091152 (2021).
Google Scholar
Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ’hot model’ problem. Nature 605, 26–29 (2022).
Google Scholar
Boucher, O. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 571–658 (Cambridge Univ. Press, 2014).
Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).
Google Scholar
Stevens, B. et al. DYAMOND: the dnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Prog. Earth Planet. Sci. (2019).
Zhang, Y. et al. Large-eddy simulation of shallow cumulus over land: a composite case based on ARM long-term observations at its southern great plains site. J. Atmos. Sci. 74, 3229–3251 (2017).
Google Scholar
Na, Y., Fu, Q. & Kodama, C. Precipitation probability and its future changes from a global cloud-resolving model and CMIP6 simulations. J. Geophys. Res. Atmos. 125, 2019–031926 (2020).
Google Scholar
Shamekh, S., Lamb, K. D., Huang, Y. & Gentine, P. Implicit learning of convective organization explains precipitation stochasticity. Proc. Natl Acad. Sci. USA 120, 2216158120 (2023).
Google Scholar
Rasp, S., Pritchard, M. S. & Gentine, P. Deep learning to represent subgrid processes in climate models. Proc. Natl Acad. Sci. USA 115, 9684–9689 (2018).
Google Scholar
Mauritsen, T. et al. Tuning the climate of a global model. J. Adv. Model. Earth Syst. (2012).
Yoshikane, T. & Yoshimura, K. A downscaling and bias correction method for climate model ensemble simulations of local-scale hourly precipitation. Sci. Rep. (2023).
Zängl, G., Reinert, D. & Prill, F. Grid refinement in ICON v2.6.4. Geosci. Model Dev. 15, 7153–7176 (2022).
Google Scholar
Mariotti, A. et al. Envisioning U.S. climate predictions and projections to meet new challenges. Earth’s Future 12, e2023EF004187 (2024).
Google Scholar
Häfner, D., Nuterman, R. & Jochum, M. Fast, cheap, and turbulent—global ocean modeling with GPU acceleration in Python. J. Adv. Model Earth Syst. 13, 2021–002717 (2021).
Google Scholar
Dally, W. J., Keckler, S. W. & Kirk, D. B. Evolution of the graphics processing unit (GPU). IEEE Micro 41, 42–51 (2021).
Google Scholar
Giorgetta, M. A. et al. The ICON-A model for direct QBO simulations on GPUs (version icon-cscs:baf28a514). Geosci. Model Dev. 15, 6985–7016 (2022).
Google Scholar
Frostig, R., Johnson, M. J. & Leary, C. Compiling machine learning programs via high-level tracing. Syst. Mach. Learn. (2018).
Raschka, S., Patterson, J. & Nolet, C. Machine learning in Python: main developments and technology trends in data science, machine learning, and artificial intelligence. Information 11, 193 (2020).
Google Scholar
Bradbury, J. et al. JAX: Composable Transformations of Python+NumPy Programs. GitHub (2018).
Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).
Google Scholar
Sabne, A. XLA: compiling machine learning for peak performance. Google Research (2020).
Campagne, J.-E. et al. JAX–COSMO: An end-to-end differentiable and GPU accelerated cosmology library. Open J. Astrophys. (2023).
Xue, T. et al. JAX–FEM: a differentiable GPU-accelerated 3D finite element solver for automatic inverse design and mechanistic data science. Comput. Phys. Commun. 291, 108802 (2023).
Google Scholar
Shen, C. et al. Differentiable modelling to unify machine learning and physical models for geosciences. Nat. Rev. Earth Environ. (2023).
Schoenholz, S. & Cubuk, E. D. JAX, M.D.: a framework for differentiable physics. Adv. Neural Inf. Process. Syst. 33, 11428–11441 (2020).
Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).
Google Scholar
Kochkov, D. et al. Nature 632, 1060–1066 (2024).
Eyring, V. et al. Pushing the frontiers in climate modelling and analysis with machine learning. Nat. Clim. Change 14, 916–928 (2024).
Google Scholar
Zhou, A., Hawkins, L. & Gentine, P. Proof-of-concept: using ChatGPT to translate and modernize an Earth system model from Fortran to Python/JAX. Preprint at (2024).
Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G. & Yacalis, G. Could machine learning break the convection parameterization deadlock? Geophys. Res. Lett. 45, 5742–5751 (2018).
Google Scholar
Grundner, A. et al. Deep learning based cloud cover parameterization for ICON. J. Adv. Model. Earth Syst. 14, 2021–002959 (2022).
Google Scholar
Zanna, L. & Bolton, T. Data-driven equation discovery of ocean mesoscale closures. Geophys. Res. Lett. 47, e2020GL088376 (2020).
Google Scholar
Behrens, G. et al. Non-linear dimensionality reduction with a variational encoder decoder to understand convective processes in climate models. J. Adv. Model. Earth Syst. 14, 2022–003130 (2022).
Google Scholar
Mooers, G. et al. Comparing storm resolving models and climates via unsupervised machine learning. Sci. Rep. 13, 22365 (2023).
Google Scholar
Yuval, J., O’Gorman, P. A. & Hill, C. N. Use of neural networks for stable, accurate and physically consistent parameterization of subgrid atmospheric processes with good performance at reduced precision. Geophys. Res. Lett. 48, e2020GL091363 (2021).
Google Scholar
Bretherton, C. S. et al. Correcting coarse-grid weather and climate models by machine learning from global storm-resolving simulations. J. Adv. Model. Earth Syst. 14, e2021MS002794 (2022).
Google Scholar
Zhao, W. L. et al. Physics-constrained machine learning of evapotranspiration. Geophys. Res. Lett. 46, 14496–14507 (2019).
Google Scholar
ElGhawi, R. et al. Hybrid modeling of evapotranspiration: inferring stomatal and aerodynamic resistances using combined physics-based and machine learning. Environ. Res. Lett. 18, 034039 (2023).
Google Scholar
Tao, F. et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 618, 981–985 (2023).
Google Scholar
Beucler, T., Ebert-Uphoff, I., Rasp, S., Pritchard, M. & Gentine, P. in Clouds and Their Climatic Impacts: Radiation, Circulation, and Precipitation (eds Sullivan, S. C. & Hoose, C.) Ch. 16 (John Wiley & Sons, 2023).
Beucler, T. et al. Enforcing analytic constraints in neural networks emulating physical systems. Phys. Rev. Lett. 126, 98302 (2021).
Google Scholar
Bhouri, M. A., Joly, M., Yu, R., Sarkar, S. & Perdikaris, P. Scalable Bayesian optimization with high-dimensional outputs using randomized prior networks. Preprint at (2023).
Brenowitz, N. D., Beucler, T., Pritchard, M. & Bretherton, C. S. Interpreting and stabilizing machine-learning parametrizations of convection. J. Atmos. Sci. 77, 4357–4375 (2020).
Google Scholar
Iglesias-Suarez, F. et al. Causally-informed deep learning to improve climate models and projections. J. Geophys. Res. Atmos. 129, 2023–039202 (2024).
Google Scholar
Grundner, A., Beucler, T., Gentine, P. & Eyring, V. Data-driven equation discovery of a cloud cover parameterization. J. Adv. Model. Earth Syst. 16, e2023MS003763 (2024).
Google Scholar
Camps-Valls, G. et al. Discovering causal relations and equations from data. Phys. Rep. 1044, 1–68 (2023).
Google Scholar
Fisher, R. A. & Koven, C. D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Adv. Model. Earth Syst. 12, e2018MS001453 (2020).
Google Scholar
Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).
Google Scholar
Cheng, S. et al. Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review. IEEE/CAA J. Autom. Sin. 10, 1361–1387 (2023).
Google Scholar
Nathaniel, J. et al. ChaosBench: a multi-channel, physics-based benchmark for subseasonal-to-seasonal climate prediction. Preprint at (2024).
Yang, J. et al. Erratum: the role of satellite remote sensing in climate change studies. Nat. Clim. Change 4, 74 (2014).
Google Scholar
Zhu, J. et al. LGM paleoclimate constraints inform cloud parameterizations and equilibrium climate sensitivity in CESM2. J. Adv. Model. Earth Syst. 14, e2021MS002776 (2022).
Google Scholar
Hourdin, F. et al. The art and science of climate model tuning. Bull. Am. Meteorol. Soc. 98, 589–602 (2017).
Google Scholar
Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).
Google Scholar
Eyring, V. et al. Earth System Model Evaluation Tool (ESMValTool) v2.0—an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geosci. Model Dev. 13, 3383–3438 (2020).
Google Scholar
Collier, N. et al. The International Land Model Benchmarking (ILAMB) system: design, theory, and implementation. J. Adv. Model. Earth Syst. 10, 2731–2754 (2018).
Google Scholar
Courtier, P., Thépaut, J.-N. & Hollingsworth, A. A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc. 120, 1367–1387 (1994).
Mardani, M. et al. Generative residual diffusion modeling for km-scale atmospheric downscaling. Preprint at arXiv (2023).
Brajard, J., Carrassi, A., Bocquet, M. & Bertino, L. Combining data assimilation and machine learning to infer unresolved scale parametrization. Phil. Trans. R. Soc. A 379, 20200086 (2021).
Google Scholar
Chung, H., Sim, B., Ryu, D. & Ye, J. C. Improving diffusion models for inverse problems using manifold constraints. Adv. Neural Inf. Process. Syst. 35, 25683–25696 (2022).
Buizza, C. et al. Data learning: integrating data assimilation and machine learning. J. Comput. Sci. 58, 101525 (2022).
Google Scholar
Dagon, K., Sanderson, B. M., Fisher, R. A. & Lawrence, D. M. A machine learning approach to emulation and biophysical parameter estimation with the Community Land Model, version 5. Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 223–244 (2020).
Google Scholar
Yang, B., Qian, Y., Lin, G., Leung, R. & Zhang, Y. Some issues in uncertainty quantification and parameter tuning: a case study of convective parameterization scheme in the WRF regional climate model. Atmos. Chem. Phys. 12, 2409–2427 (2012).
Google Scholar
Hennig, P., Osborne, M. A. & Kersting, H. P. Probabilistic Numerics: Computation as Machine Learning (Cambridge Univ. Press, 2022).
Camps-Valls, G. et al. Physics-aware Gaussian processes in remote sensing. Appl. Soft Comput. 68, 69–82 (2018).
Google Scholar
Liu, Z. et al. Carbon monitor, a near-realtime daily dataset of global CO2 emission from fossil fuel and cement production. Sci. Data 7, 392 (2020).
Google Scholar
Terhaar, J., Frolicher, T. L., Aschwanden, M. T., Friedlingstein, P. & Joos, F. Adaptive emission reduction approach to reach any global warming target. Nat. Clim. Change 12, 1136–1142 (2022).
Google Scholar
O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
Google Scholar
Watson-Parris, D. et al. ClimateBench v1. 0: a benchmark for data-driven climate projections. J. Adv. Model. Earth Syst. 14, e2021MS002954 (2022).
Google Scholar
Bauer, P., Stevens, B. & Hazeleger, W. A digital twin of Earth for the green transition. Nat. Clim. Change 11, 80–83 (2021).
Google Scholar
Svendsen, D. H., Martino, L. & Camps-Valls, G. Active emulation of computer codes with Gaussian processes—application to remote sensing. Pattern Recognit. 100, 107103 (2020).
Google Scholar
Runge, J., Gerhardus, A., Varando, G., Eyring, V. & Camps-Valls, G. Causal inference for time series. Nat. Rev. Earth Environ 4, 487–505 (2023).
Google Scholar
Huang, L. & Hoefler, T. Compressing multidimensional weather and climate data into neural networks. Preprint at (2023).
Slingo, J. et al. Ambitious partnership needed for reliable climate prediction. Nat. Clim. Change 12, 499–503 (2022).
Google Scholar
Stevens, B. et al. Earth virtualization engines (EVE). Earth Syst. Sci. Data 16, 2113–2122 (2024).
Google Scholar
Roe, S. et al. Land-based measures to mitigate climate change: potential and feasibility by country. Glob. Change Biol. 27, 6025–6058 (2021).
Google Scholar
Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).
Google Scholar
Schuur, E. A. G. et al. Permafrost and climate change: carbon cycle feedbacks from the warming Arctic. Annu. Rev. Environ. Resour. 47, 343–371 (2022).
Google Scholar
Fasullo, J. T. et al. Coupled climate responses to recent Australian wildfire and COVID-19 emissions anomalies estimated in CESM2. Geophys. Res. Lett. 48, 2021–093841 (2021).
Google Scholar
Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359, 8328 (2018).
Google Scholar
Steffen, W. et al. The emergence and evolution of Earth system science. Nat. Rev. Earth Environ. 1, 54–63 (2020).
Google Scholar
link