Kilaru, P. et al. Wastewater surveillance for infectious disease: a systematic review. Am. J. Epidemiol. 192, 305–322 (2023).
Google Scholar
Adhikari, S. & Halden, R. U. Opportunities and limits of wastewater-based epidemiology for tracking global health and attainment of UN sustainable development goals. Environ. Int. 163, 107217 (2022).
Google Scholar
Kasprzyk-Hordern, B. et al. Wastewater-based epidemiology for the assessment of population exposure to chemicals: the need for integration with human biomonitoring for global One Health actions. J. Hazard. Mater. 450, 131009 (2023).
Google Scholar
Wilson, W. J. Isolation of enteric bacilli from sewage and water and its bearing on epidemiology. Br. Med. J. 2, 560–562 (1933).
Google Scholar
Paul, J. R., Trask, J. D. & Culotta, C. S. Poliomyelitic virus in sewage. Science (1939).
Google Scholar
Singer, A. C. et al. A world of wastewater-based epidemiology. Nat. Water 1, 408–415 (2023).
Google Scholar
Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019).
Google Scholar
Fouz, N. et al. The contribution of wastewater to the transmission of antimicrobial resistance in the environment: implications of mass gathering settings. Trop. Med. Infect. Dis. 5, 33 (2020).
Google Scholar
Agrawal, S. et al. Prevalence and circulation patterns of SARS-CoV-2 variants in European sewage mirror clinical data of 54 European cities. Water Res. 214, 118162 (2022).
Google Scholar
Koureas, M. et al. Wastewater levels of respiratory syncytial virus associated with influenza-like illness rates in children—a case study in Larissa, Greece (October 2022–January 2023). Int. J. Environ. Res. Public. Health 20, 5219 (2023).
Google Scholar
Link-Gelles, R. Public Health response to a case of paralytic poliomyelitis in an unvaccinated person and detection of Poliovirus in wastewater—New York, June–August 2022. MMWR Morb. Mortal. Wkly Rep. 71, 1065–1068 (2022).
Google Scholar
Boehm, A. B. et al. Human norovirus (HuNoV) GII RNA in wastewater solids at 145 United States wastewater treatment plants: comparison to positivity rates of clinical specimens and modeled estimates of HuNoV GII shedders. J. Expo. Sci. Environ. Epidemiol. 34, 440–447 (2024).
Google Scholar
Wastewater Analysis and Drugs—a European Multi-city Study (European Union Drug Agency, 2025); https://www.emcdda.europa.eu/publications/html/pods/waste-water-analysis_en
Bade, R., Ghetia, M., White, J. M. & Gerber, C. Determination of prescribed and designer benzodiazepines and metabolites in influent wastewater. Anal. Methods Adv. Methods Appl. 12, 3637–3644 (2020).
Google Scholar
Yao, Y. et al. Investigating alcohol consumption in China via wastewater-based epidemiology. Environ. Geochem. Health 46, 24 (2024).
Google Scholar
Zhong, Y. et al. Application of wastewater-based epidemiology to estimate the usage of beta-agonists in 31 cities in China. Sci. Total Environ. 894, 164956 (2023).
Google Scholar
Bowes, D. A. et al. Integrated multiomic wastewater-based epidemiology can elucidate population-level dietary behaviour and inform public health nutrition assessments. Nat. Food 4, 257–266 (2023).
Google Scholar
Munk, P. et al. Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance. Nat. Commun. 13, 7251 (2022).
Google Scholar
Adisasmito, W. B. et al. One Health: a new definition for a sustainable and healthy future. PLoS Pathog. 18, e1010537 (2022).
Google Scholar
Rodriguez-Mozaz, S. et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 140, 105733 (2020).
Google Scholar
Irrgang, C. et al. Anwendungsbereiche von künstlicher Intelligenz im Kontext von One Health mit Fokus auf antimikrobielle Resistenzen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz (2023).
Google Scholar
Groussin, M. et al. Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 184, 2053–2067.e18 (2021).
Google Scholar
Fang, G.-Y., Liu, X.-Q., Jiang, Y.-J., Mu, X.-J. & Huang, B.-W. Horizontal gene transfer in activated sludge enhances microbial antimicrobial resistance and virulence. Sci. Total Environ. 912, 168908 (2024).
Google Scholar
Buelow, E. et al. Hospital discharges in urban sanitation systems: long-term monitoring of wastewater resistome and microbiota in relationship to their eco-exposome. Water Res. X 7, 100045 (2020).
Google Scholar
Chen, H. et al. Source identification of antibiotic resistance genes in a peri-urban river using novel crAssphage marker genes and metagenomic signatures. Water Res. 167, 115098 (2019).
Google Scholar
Kasprzyk-Hordern, B. et al. Wastewater-based epidemiology for comprehensive community health diagnostics in a national surveillance study: mining biochemical markers in wastewater. J. Hazard. Mater. 450, 130989 (2023).
Google Scholar
Barcellos, D. S., Barquilha, C. E. R., Oliveira, P. E., Prokopiuk, M. & Etchepare, R. G. How has the COVID-19 pandemic impacted wastewater-based epidemiology? Sci. Total Environ. 892, 164561 (2023).
Google Scholar
Ciannella, S., González-Fernández, C. & Gomez-Pastora, J. Recent progress on wastewater-based epidemiology for COVID-19 surveillance: a systematic review of analytical procedures and epidemiological modeling. Sci. Total Environ. 878, 162953 (2023).
Google Scholar
Rauch, W., Schenk, H., Insam, H., Markt, R. & Kreuzinger, N. Data modelling recipes for SARS-CoV-2 wastewater-based epidemiology. Environ. Res. 214, 113809 (2022).
Google Scholar
Sweetapple, C. et al. Dynamic population normalisation in wastewater-based epidemiology for improved understanding of the SARS-CoV-2 prevalence: a multi-site study. J. Water Health 21, 625–642 (2023).
Google Scholar
Zhan, Q. et al. Relationships between SARS-CoV-2 in wastewater and COVID-19 clinical cases and hospitalizations, with and without normalization against indicators of human waste. ACS EST Water 2, 1992–2003 (2022).
Google Scholar
Jiang, G. et al. Moving forward with COVID-19: future research prospects of wastewater-based epidemiology methodologies and applications. Curr. Opin. Environ. Sci. Health 33, 100458 (2023).
Google Scholar
Ai, Y., He, F., Lancaster, E. & Lee, J. Application of machine learning for multi-community COVID-19 outbreak predictions with wastewater surveillance. PLoS ONE 17, e0277154 (2022).
Google Scholar
Li, X. et al. Data-driven estimation of COVID-19 community prevalence through wastewater-based epidemiology. Sci. Total Environ. 789, 147947 (2021).
Google Scholar
Lai, M., Wulff, S. S., Cao, Y., Robinson, T. J. & Rajapaksha, R. An interpretable time series machine learning method for varying forecast and nowcast lengths in wastewater-based epidemiology. MethodsX 11, 102382 (2023).
Google Scholar
Wade, M. J. et al. Understanding and managing uncertainty and variability for wastewater monitoring beyond the pandemic: lessons learned from the United Kingdom national COVID-19 surveillance programmes. J. Hazard. Mater. 424, 127456 (2022).
Google Scholar
Morvan, M. et al. An analysis of 45 large-scale wastewater sites in England to estimate SARS-CoV-2 community prevalence. Nat. Commun. 13, 4313 (2022).
Google Scholar
Schmitz, B. W. et al. Enumerating asymptomatic COVID-19 cases and estimating SARS-CoV-2 fecal shedding rates via wastewater-based epidemiology. Sci. Total Environ. 801, 149794 (2021).
Google Scholar
Feng, S. et al. Intensity of sample processing methods impacts wastewater SARS-CoV-2 whole genome amplicon sequencing outcomes. Sci. Total Environ. 876, 162572 (2023).
Google Scholar
Mello, M. M., Meschke, J. S. & Palmer, G. H. Mainstreaming wastewater surveillance for infectious disease. N. Engl. J. Med. 388, 1441–1444 (2023).
Google Scholar
Hoar, C. et al. Looking forward: the role of academic researchers in building sustainable wastewater surveillance programs. Environ. Health Perspect. 130, 125002 (2022).
Google Scholar
Sanyal, A., Agarwal, S., Ramakrishnan, U., Garg, K. M. & Chattopadhyay, B. Using environmental sampling to enable zoonotic pandemic preparedness. J. Indian Inst. Sci. 102, 711–730 (2022).
Google Scholar
Xagoraraki, I. & O’Brien, E. in Women in Water Quality: Investigations by Prominent Female Engineers (ed. O’Bannon, D. J.) 75–97 (Springer, 2020); https://doi.org/10.1007/978-3-030-17819-2_5
Barber, C. et al. Community-scale wastewater surveillance of Candida auris during an ongoing outbreak in southern Nevada. Environ. Sci. Technol. 57, 1755–1763 (2023).
Google Scholar
Cai, L. & Zhang, T. Detecting human bacterial pathogens in wastewater treatment plants by a high-throughput shotgun sequencing technique. Environ. Sci. Technol. 47, 5433–5441 (2013).
Google Scholar
Shah, S. et al. Wastewater surveillance to infer COVID-19 transmission: a systematic review. Sci. Total Environ. 804, 150060 (2022).
Google Scholar
EU-WISH: EU4 Health Project 11/2023–10/2026 (Statens Serum Institut, 2024); https://en.ssi.dk/surveillance-and-preparedness/international-coorporation/eu-wish
Health Emergency Preparedness and Response Authority. The European Commission Lays the Foundations for a Global System for Wastewater Surveillance for Public Health (European Commission, 2023); https://health.ec.europa.eu/latest-updates/european-commission-lays-foundations-global-system-wastewater-surveillance-public-health-2023-11-14_en
Keshaviah, A. et al. Wastewater monitoring can anchor global disease surveillance systems. Lancet Glob. Health 11, e976–e981 (2023).
Google Scholar
Directive (EU) 2024/3019 of the European Parliament and of the Council of 27 November 2024 Concerning Urban Wastewater Treatment (recast) (Text with EEA relevance) (European Commission, 2024); https://eur-lex.europa.eu/eli/dir/2024/3019/oj
Gholizadeh, A., Khiadani, M., Foroughi, M., Alizade Siuki, H. & Mehrfar, H. Wastewater treatment plants: the missing link in global One-Health surveillance and management of antibiotic resistance. J. Infect. Public Health 16, 217–224 (2023).
Google Scholar
Miłobedzka, A. et al. Monitoring antibiotic resistance genes in wastewater environments: the challenges of filling a gap in the One-Health cycle. J. Hazard. Mater. 424, 127407 (2022).
Google Scholar
Xiao, K. & Zhang, L. Wastewater pathogen surveillance based on One Health approach. Lancet Microbe 4, e297 (2023).
Google Scholar
Grassly, N. C., Shaw, A. G. & Owusu, M. Global wastewater surveillance for pathogens with pandemic potential: opportunities and challenges. Lancet Microbe 6, 100939 (2024).
Google Scholar
Ahmed, W. et al. Leveraging wastewater surveillance to detect viral diseases in livestock settings. Sci. Total Environ. 931, 172593 (2024).
Google Scholar
Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017).
Google Scholar
Costa, F. et al. Patterns in Leptospira shedding in Norway rats (Rattus norvegicus) from Brazilian slum communities at high risk of disease transmission. PLoS Negl. Trop. Dis. 9, e0003819 (2015).
Google Scholar
Wolfe, M. K. et al. Wastewater detection of emerging Arbovirus infections: case study of Dengue in the United States. Environ. Sci. Technol. Lett. 11, 9–15 (2024).
Google Scholar
Foyle, L. et al. Prevalence and distribution of antimicrobial resistance in effluent wastewater from animal slaughter facilities: a systematic review. Environ. Pollut. 318, 120848 (2023).
Google Scholar
Risely, A. et al. Host–plasmid network structure in wastewater is linked to antimicrobial resistance genes. Nat. Commun. 15, 555 (2024).
Google Scholar
Monteiro, S., Pimenta, R., Nunes, F., Cunha, M. V. & Santos, R. Detection of dengue virus and chikungunya virus in wastewater in Portugal: an exploratory surveillance study. Lancet Microbe 5, 100911 (2024).
Google Scholar
Fanok, S., Monis, P. T., Keegan, A. R. & King, B. J. The detection of Japanese encephalitis virus in municipal wastewater during an acute disease outbreak. J. Appl. Microbiol. 134, lxad275 (2023).
Google Scholar
Chen, W. & Bibby, K. A model-based framework to assess the feasibility of monitoring Zika virus with wastewater-based epidemiology. ACS EST Water 3, 1071–1081 (2023).
Google Scholar
Ansari, N. et al. Environmental surveillance for COVID-19 using SARS-CoV-2 RNA concentration in wastewater—a study in District East, Karachi, Pakistan. Lancet Reg. Health – Southeast Asia 20, 100299 (2024).
Google Scholar
Barnes, K. G. et al. Utilizing river and wastewater as a SARS-CoV-2 surveillance tool in settings with limited formal sewage systems. Nat. Commun. 14, 7883 (2023).
Google Scholar
Diamond, M. B., Yee, E., Bhinge, M. & Scarpino, S. V. Wastewater surveillance facilitates climate change-resilient pathogen monitoring. Sci. Transl. Med. 15, eadi7831 (2023).
Google Scholar
Ishtiaq, F. Wastewater-based surveillance of vector-borne pathogens: a cautionary note. Trends Parasitol. 40, 93–95 (2024).
Google Scholar
Li, J. et al. In situ calibration of passive samplers for viruses in wastewater. ACS EST Water 2, 1881–1890 (2022).
Google Scholar
Hillebrand, O., Musallam, S., Scherer, L., Nödler, K. & Licha, T. The challenge of sample-stabilisation in the era of multi-residue analytical methods: a practical guideline for the stabilisation of 46 organic micropollutants in aqueous samples. Sci. Total Environ. 454–455, 289–298 (2013).
Google Scholar
Markt, R. et al. Detection and stability of SARS-CoV-2 fragments in wastewater: impact of storage temperature. Pathogens 10, 1215 (2021).
Google Scholar
Karthikeyan, S. et al. Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission. Nature 609, 101–108 (2022).
Google Scholar
Bognich, G., Howell, N. & Butler, E. Fate-and-transport modeling of SARS-CoV-2 for rural wastewater-based epidemiology application benefit. Heliyon 10, e25927 (2024).
Google Scholar
Tiwari, A. et al. Wastewater surveillance of antibiotic-resistant bacterial pathogens: a systematic review. Front. Microbiol. 13, 977106 (2022).
Google Scholar
Abdeldayem, O. M. et al. Viral outbreaks detection and surveillance using wastewater-based epidemiology, viral air sampling and machine learning techniques: a comprehensive review and outlook. Sci. Total Environ. 803, 149834 (2022).
Google Scholar
Kanneganti, D., Reinersman, L. E., Holm, R. H. & Smith, T. Estimating sewage flow rate in Jefferson County, Kentucky, using machine learning for wastewater-based epidemiology applications. Water Supply 22, 8434–8439 (2022).
Google Scholar
Matheri, A. N., Belaid, M., Njenga, C. K. & Ngila, J. C. Water and wastewater digital surveillance for monitoring and early detection of the COVID-19 hotspot: industry 4.0. Int. J. Environ. Sci. Technol. 20, 1095–1112 (2023).
Google Scholar
Bertels, X. et al. Factors influencing SARS-CoV-2 RNA concentrations in wastewater up to the sampling stage: a systematic review. Sci. Total Environ. 820, 153290 (2022).
Google Scholar
Wiesner-Friedman, C. et al. Characterizing spatial information loss for wastewater surveillance using crAssphage: effect of decay, temperature and population mobility. Environ. Sci. Technol. 57, 20802–20812 (2023).
Google Scholar
Wyler, E. et al. Pathogen dynamics and discovery of novel viruses and enzymes by deep nucleic acid sequencing of wastewater. Environ. Int. 190, 108875 (2024).
Google Scholar
Rabe, A. et al. Correlation between wastewater and COVID-19 case incidence rates in major California sewersheds across three variant periods. J. Water Health 21, 1303–1317 (2023).
Google Scholar
Schill, R., Nelson, K. L., Harris-Lovett, S. & Kantor, R. S. The dynamic relationship between COVID-19 cases and SARS-CoV-2 wastewater concentrations across time and space: considerations for model training data sets. Sci. Total Environ. 871, 162069 (2023).
Google Scholar
Sakarovitch, C. et al. Monitoring of SARS-CoV-2 in wastewater: what normalisation for improved understanding of epidemic trends? J. Water Health 20, 712–726 (2022).
Google Scholar
Al-Faliti, M. et al. Comparing rates of change in SARS-CoV-2 wastewater load and clinical cases in 19 sewersheds across four major metropolitan areas in the United States. ACS EST Water 2, 2233–2242 (2022).
Google Scholar
Isaksson, F., Lundy, L., Hedström, A., Székely, A. J. & Mohamed, N. Evaluating the use of alternative normalization approaches on SARS-CoV-2 concentrations in wastewater: experiences from two catchments in northern Sweden. Environments 9, 39 (2022).
Google Scholar
Hsu, S.-Y. et al. Biomarkers selection for population normalization in SARS-CoV-2 wastewater-based epidemiology. Water Res. 223, 118985 (2022).
Google Scholar
McClary-Gutierrez, J. S. et al. Standardizing data reporting in the research community to enhance the utility of open data for SARS-CoV-2 wastewater surveillance. Environ. Sci. Water Res. Technol. 7, 1545–1551 (2021).
Google Scholar
Data Structures Working Group (2020).
Manuel, D. et al. Public Health Environmental Surveillance Open Data Model (PHES-ODM) (OSFHOME, 2021); https://doi.org/10.17605/OSF.IO/49Z2B
Amman, F. et al. Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nat. Biotechnol. 40, 1814–1822 (2022).
Google Scholar
Kayikcioglu, T. et al. Performance of methods for SARS-CoV-2 variant detection and abundance estimation within mixed population samples. PeerJ 11, e14596 (2023).
Google Scholar
Smyth, D. S. et al. Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater. Nat. Commun. 13, 635 (2022).
Google Scholar
Cao, Y. & Francis, R. On forecasting the community-level COVID-19 cases from the concentration of SARS-CoV-2 in wastewater. Sci. Total Environ. 786, 147451 (2021).
Google Scholar
Schenk, H. et al. Prediction of hospitalisations based on wastewater-based SARS-CoV-2 epidemiology. Sci. Total Environ. 873, 162149 (2023).
Google Scholar
Soller, J. et al. Modeling infection from SARS-CoV-2 wastewater concentrations: promise, limitations and future directions. J. Water Health 20, 1197–1211 (2022).
Google Scholar
Jiang, G. et al. Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology. Water Res. 218, 118451 (2022).
Google Scholar
Senaratna, K. Y. K. et al. Estimating COVID-19 cases on a university campus based on Wastewater Surveillance using machine learning regression models. Sci. Total Environ. 906, 167709 (2024).
Google Scholar
Lin, T. et al. Optimizing campus-wide COVID-19 test notifications with interpretable wastewater time-series features using machine learning models. Sci. Rep. 13, 20670 (2023).
Google Scholar
Vaughan, L. et al. An exploration of challenges associated with machine learning for time series forecasting of COVID-19 community spread using wastewater-based epidemiological data. Sci. Total Environ. 858, 159748 (2023).
Google Scholar
Fazli, M. & Shakeri, H. Leveraging deep learning to improve COVID-19 forecasting using wastewater vira load. In Proceedings of 2023 IEEE International Conference on Big Data (BigData), 2705–2713 (IEEE, 2023).
Zehnder, C. et al. Machine learning for detecting virus infection hotspots via wastewater-based epidemiology: the case of SARS-CoV-2 RNA. GeoHealth 7, e2023GH000866 (2023).
Google Scholar
Nourbakhsh, S. et al. A wastewater-based epidemic model for SARS-CoV-2 with application to three Canadian cities. Epidemics 39, 100560 (2022).
Google Scholar
Torabi, F. et al. Wastewater-based surveillance models for COVID-19: a focused review on spatio-temporal models. Heliyon 9, e21734 (2023).
Google Scholar
Baaijens, J. A. et al. Lineage abundance estimation for SARS-CoV-2 in wastewater using transcriptome quantification techniques. Genome Biol. 23, 236 (2022).
Google Scholar
Aßmann, E. et al. Impact of reference design on estimating SARS-CoV-2 lineage abundances from wastewater sequencing data. GigaScience 13, giae051 (2024).
Google Scholar
Mathieu, A., Leclercq, M., Sanabria, M., Perin, O. & Droit, A. Machine learning and deep learning applications in metagenomic taxonomy and functional annotation. Front. Microbiol. 13, 811495 (2022).
Google Scholar
Férez, J. A. et al. Wastewater-based epidemiology to describe the evolution of SARS-CoV-2 in the south-east of Spain, and application of phylogenetic analysis and a machine learning approach. Viruses 15, 1499 (2023).
Google Scholar
Chen, H. et al. Environmental risk characterization and ecological process determination of bacterial antibiotic resistome in lake sediments. Environ. Int. 147, 106345 (2021).
Google Scholar
Oh, M. et al. MetaCompare: a computational pipeline for prioritizing environmental resistome risk. FEMS Microbiol. Ecol. 94, fiy079 (2018).
Google Scholar
Zahra, Q., Gul, J., Shah, A. R., Yasir, M. & Karim, A. M. Antibiotic resistance genes prevalence prediction and interpretation in beaches affected by urban wastewater discharge. One Health Amst. Neth. 17, 100642 (2023).
Google Scholar
Arango-Argoty, G. et al. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6, 23 (2018).
Google Scholar
Newton, R. J. & McClary, J. S. The flux and impact of wastewater infrastructure microorganisms on human and ecosystem health. Curr. Opin. Biotechnol. 57, 145–150 (2019).
Google Scholar
Zhi, W., Appling, A. P., Golden, H. E., Podgorski, J. & Li, L. Deep learning for water quality. Nat. Water 2, 228–241 (2024).
Google Scholar
Rashed, E. A. & Hirata, A. One-year lesson: machine learning prediction of COVID-19 positive cases with meteorological data and mobility estimate in Japan. Int. J. Environ. Res. Public Health 18, 5736 (2021).
Google Scholar
Ramchandani, A., Fan, C. & Mostafavi, A. DeepCOVIDNet: an interpretable deep learning model for predictive surveillance of COVID-19 using heterogeneous features and their interactions. IEEE Access 8, 159915–159930 (2020).
Google Scholar
Fritz, C., Dorigatti, E. & Rügamer, D. Combining graph neural networks and spatio-temporal disease models to improve the prediction of weekly COVID-19 cases in Germany. Sci. Rep. 12, 3930 (2022).
Google Scholar
Mwanga, M. J., Obura, H. O., Evans, M. & Awe, O. I. Enhanced deep convolutional neural network for SARS-CoV-2 variants classification. Preprint at bioRxiv (2023).
Jahshan, Z. & Yavits, L. ViTAL: Vision TrAnsformer based Low coverage SARS-CoV-2 lineage assignment. Bioinformatics 40, btae093 (2024).
Google Scholar
Jahn, K. et al. Early detection and surveillance of SARS-CoV-2 genomic variants in wastewater using COJAC. Nat. Microbiol. 7, 1151–1160 (2022).
Google Scholar
Schumann, V.-F. et al. SARS-CoV-2 infection dynamics revealed by wastewater sequencing analysis and deconvolution. Sci. Total Environ. 853, 158931 (2022).
Google Scholar
Raharinirina, N. et al. SARS-CoV-2 evolution on a dynamic immune landscape. Nature 639, 196–204 (2025).
Google Scholar
Sutcliffe, S. G. et al. Tracking SARS-CoV-2 variants of concern in wastewater: an assessment of nine computational tools using simulated genomic data. Microb. Genomics 10, 001249 (2024).
Google Scholar
Meyer, F. et al. Critical assessment of metagenome interpretation: the second round of challenges. Nat. Methods 19, 429–440 (2022).
Google Scholar
Perez-Zabaleta, M. et al. Long-term SARS-CoV-2 surveillance in the wastewater of Stockholm: what lessons can be learned from the Swedish perspective? Sci. Total Environ. 858, 160023 (2023).
Google Scholar
WHO to Identify Pathogens that Could Cause Future Outbreaks and Pandemics (World Health Organization, 2022); https://www.who.int/news/item/21-11-2022-who-to-identify-pathogens-that-could-cause-future-outbreaks-and-pandemics
Urban, L. et al. Real‐time genomics for One Health. Mol. Syst. Biol. 19, e11686 (2023).
Google Scholar
Jones, D. T. Setting the standards for machine learning in biology. Nat. Rev. Mol. Cell Biol. 20, 659–660 (2019).
Google Scholar
Walsh, I. et al. DOME: recommendations for supervised machine learning validation in biology. Nat. Methods 18, 1122–1127 (2021).
Google Scholar
Galani, A. et al. SARS-CoV-2 wastewater surveillance data can predict hospitalizations and ICU admissions. Sci. Total Environ. 804, 150151 (2022).
Google Scholar
Dejus, B. et al. Wastewater-based prediction of COVID-19 cases using a random forest algorithm with strain prevalence data: a case study of five municipalities in Latvia. Sci. Total Environ. 891, 164519 (2023).
Google Scholar
Naughton, C. C. et al. Show us the data: global COVID-19 wastewater monitoring efforts, equity and gaps. FEMS Microbes 4, xtad003 (2023).
Google Scholar
EL Bilali, A., Taleb, A., Bahlaoui, M. A. & Brouziyne, Y. An integrated approach based on Gaussian noises-based data augmentation method and AdaBoost model to predict faecal coliforms in rivers with small dataset. J. Hydrol. 599, 126510 (2021).
Google Scholar
Gupta, P., Malhotra, P., Narwariya, J., Vig, L. & Shroff, G. Transfer learning for clinical time series analysis using deep neural networks. J. Healthc. Inform. Res. 4, 112–137 (2020).
Google Scholar
link
