CDC. Facts About Suicide (CDC, 2021).
Nock, M. K. et al. Suicide and suicidal behavior. Epidemiol. Rev. 30, 133–154 (2008).
Google Scholar
WHO. National Suicide Prevention Strategies: Progress, Examples and Indicators (World Health Organization, 2018).
Franklin, J. C. et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research. Psychol. Bull. 143, 187–232 (2017).
Google Scholar
Kleiman, E. M. et al. Examination of real-time fluctuations in suicidal ideation and its risk factors: results from two ecological momentary assessment studies. J. Abnorm. Psychol. 126, 726–738 (2017).
Google Scholar
Wang, S. B. et al. A pilot study using frequent inpatient assessments of suicidal thinking to predict short-term postdischarge suicidal behavior. JAMA Netw. Open 4, e210591 (2021).
Google Scholar
Bryan, C. J., Rozek, D. C., Butner, J. & Rudd, M. D. Patterns of change in suicide ideation signal the recurrence of suicide attempts among high-risk psychiatric outpatients. Behav. Res. Ther. 120, 103392 (2019).
Google Scholar
Wright, A. G. C. & Woods, W. C. Personalized models of psychopathology. Annu. Rev. Clin. Psychol. 16, 49–74 (2020).
Google Scholar
Piccirillo, M. L. & Rodebaugh, T. L. Foundations of idiographic methods in psychology and applications for psychotherapy. Clin. Psychol. Rev. 71, 90–100 (2019).
Google Scholar
Molenaar, P. C. A manifesto on psychology as idiographic science: bringing the person back into scientific psychology, this time forever. Measurement 2, 201–218 (2004).
Molenaar, P. C. M. & Campbell, C. G. The new person-specific paradigm in psychology. Curr. Dir. Psychol. Sci. 18, 112–117 (2009).
Google Scholar
Fisher, A. J., Medaglia, J. D. & Jeronimus, B. F. Lack of group-to-individual generalizability is a threat to human subjects research. Proc. Natl Acad. Sci. USA 115, E6106–E6115 (2018).
Google Scholar
Berman, A. L., King, R. A. & Apter, A. in Suicide in Children and Adolescents (eds King, R. A. & Apter, A.) 198–210 (Cambridge Univ. Press, 2003).
Leenars, A. A. In defense of the idiographic approach: studies of suicide notes and personal documents. Arch. Suicide Res. 6, 19–30 (2002).
Google Scholar
Barlow, D. H. & Nock, M. K. Why can’t we be more idiographic in our research? Perspect. Psychol. Sci. J. Assoc. Psychol. Sci. 4, 19–21 (2009).
Google Scholar
Ozomaro, U., Wahlestedt, C. & Nemeroff, C. B. Personalized medicine in psychiatry: problems and promises. BMC Med. 11, 132 (2013).
Google Scholar
Simon, G. E. & Perlis, R. H. Personalized medicine for depression: can we match patients with treatments? Am. J. Psychiatry 167, 1445–1455 (2010).
Google Scholar
Kaurin, A., Dombrovski, A. Y., Hallquist, M. N. & Wright, A. G. Integrating a functional view on suicide risk into idiographic statistical models. Behav. Res. Ther. 150, 104012 (2022).
Google Scholar
Soyster, P. D., Ashlock, L. & Fisher, A. J. Pooled and person-specific machine learning models for predicting future alcohol consumption, craving, and wanting to drink: a demonstration of parallel utility. Psychol. Addict. Behav. 36, 296–306 (2021).
Google Scholar
Fisher, A. J. & Soyster, P. D. Generating accurate personalized predictions of future behavior: a smoking exemplar. Preprint at (2019).
Beck, E. D. & Jackson, J. J. Personalized prediction of behaviors and experiences: an idiographic person–situation test. Psychol. Sci. 33, 1767–1782 (2022).
Google Scholar
Nahum-Shani, I. et al. Just-in-Time Adaptive Interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann. Behav. Med. 52, 446–462 (2018).
Google Scholar
Howe, E. S. & Fisher, A. J. Identifying and predicting posttraumatic stress symptom states in adults with posttraumatic stress disorder. J. Trauma. Stress 35, 1508–1520 (2022).
Google Scholar
Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Academic Press, 2013).
Wang, S. B. et al. Idiographic prediction of suicidal thoughts (GitHub); https://github.com/ShirleyBWang/idiographic_prediction
Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (MIT Press, 2006).
Roberts, S. et al. Gaussian processes for time-series modelling. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 371, 20110550 (2013).
Schulz, E., Speekenbrink, M. & Krause, A. A tutorial on Gaussian process regression: modelling, exploring and exploiting functions. J. Math. Psychol. 85, 1–16 (2018).
Google Scholar
Torous, J. & Hsin, H. Empowering the digital therapeutic relationship: virtual clinics for digital health interventions. Npj Digit. Med. 1, 16 (2018).
Google Scholar
Rodriguez-Villa, E. et al. The digital clinic: implementing technology and augmenting care for mental health. Gen. Hosp. Psychiatry 66, 59–66 (2020).
Google Scholar
Coppersmith, D. D. L. et al. Mapping the timescale of suicidal thinking. Proc. Natl Acad. Sci. USA 120, e2215434120 (2023).
Google Scholar
Intille, S., Haynes, C., Maniar, D., Ponnada, A. & Manjourides, J. μEMA: microinteraction-based Ecological Momentary Assessment (EMA) using a smartwatch. Proc. ACM Int. Conf. Ubiquitous Comput. 2016, 1124–1128 (2016).
Google Scholar
Ponnada, A., Haynes, C., Maniar, D., Manjourides, J. & Intille, S. Microinteraction ecological momentary assessment response rates: effect of microinteractions or the smartwatch? Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 92 (2017).
Google Scholar
Adams, L. et al. Assessing the real-time influence of racism-related stress and suicidality among black men: protocol for an ecological momentary assessment study. JMIR Res. Protoc. 10, e31241 (2021).
Google Scholar
Alvarez, K., Polanco-Roman, L., Samuel Breslow, A. & Molock, S. Structural racism and suicide prevention for ethnoracially minoritized youth: a conceptual framework and illustration across systems. Am. J. Psychiatry 179, 422–433 (2022).
Google Scholar
Kleiman, E. M. et al. Can passive measurement of physiological distress help better predict suicidal thinking?. Transl. Psychiatry 11, 611 (2021).
Google Scholar
Nock, M. K., Holmberg, E. B., Photos, V. I. & Michel, B. D. Self-injurious thoughts and behaviors interview: development, reliability and validity in an adolescent sample. Psychol. Assess. 19, 309–317 (2007).
Google Scholar
Fortgang, R. G. et al. Increase in suicidal thinking during COVID-19. Clin. Psychol. Sci. 9, 482–488 (2021).
Google Scholar
Bentley, K. H. et al. Do patterns and types of negative affect during hospitalization predict short-term post-discharge suicidal thoughts and behaviors? Affect. Sci. 2, 484–494 (2021).
Google Scholar
Mou, D. et al. Negative affect is more strongly associated with suicidal thinking among suicidal patients with borderline personality disorder than those without. J. Psychiatr. Res. 104, 198–201 (2018).
Google Scholar
R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2019); https://www.R-project.org/
Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).
Google Scholar
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
Google Scholar
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
Google Scholar
Kuhn, M. & Wickham, H. Tidymodels: a collection of packages for modeling and machine learning using tidyverse principles (Tidymodels, 2020); https://www.tidymodels.org
Kuhn, M. & Johnson, K. Applied Predictive Modeling (Springer, 2013).
link