Building personalized machine learning models using real-time monitoring data to predict idiographic suicidal thoughts

Building personalized machine learning models using real-time monitoring data to predict idiographic suicidal thoughts

  • CDC. Facts About Suicide (CDC, 2021).

  • Nock, M. K. et al. Suicide and suicidal behavior. Epidemiol. Rev. 30, 133–154 (2008).

    Article 
    PubMed 

    Google Scholar 

  • WHO. National Suicide Prevention Strategies: Progress, Examples and Indicators (World Health Organization, 2018).

  • Franklin, J. C. et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research. Psychol. Bull. 143, 187–232 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Kleiman, E. M. et al. Examination of real-time fluctuations in suicidal ideation and its risk factors: results from two ecological momentary assessment studies. J. Abnorm. Psychol. 126, 726–738 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Wang, S. B. et al. A pilot study using frequent inpatient assessments of suicidal thinking to predict short-term postdischarge suicidal behavior. JAMA Netw. Open 4, e210591 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bryan, C. J., Rozek, D. C., Butner, J. & Rudd, M. D. Patterns of change in suicide ideation signal the recurrence of suicide attempts among high-risk psychiatric outpatients. Behav. Res. Ther. 120, 103392 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wright, A. G. C. & Woods, W. C. Personalized models of psychopathology. Annu. Rev. Clin. Psychol. 16, 49–74 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Piccirillo, M. L. & Rodebaugh, T. L. Foundations of idiographic methods in psychology and applications for psychotherapy. Clin. Psychol. Rev. 71, 90–100 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Molenaar, P. C. A manifesto on psychology as idiographic science: bringing the person back into scientific psychology, this time forever. Measurement 2, 201–218 (2004).

    Google Scholar 

  • Molenaar, P. C. M. & Campbell, C. G. The new person-specific paradigm in psychology. Curr. Dir. Psychol. Sci. 18, 112–117 (2009).

    Article 

    Google Scholar 

  • Fisher, A. J., Medaglia, J. D. & Jeronimus, B. F. Lack of group-to-individual generalizability is a threat to human subjects research. Proc. Natl Acad. Sci. USA 115, E6106–E6115 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berman, A. L., King, R. A. & Apter, A. in Suicide in Children and Adolescents (eds King, R. A. & Apter, A.) 198–210 (Cambridge Univ. Press, 2003).

  • Leenars, A. A. In defense of the idiographic approach: studies of suicide notes and personal documents. Arch. Suicide Res. 6, 19–30 (2002).

    Article 

    Google Scholar 

  • Barlow, D. H. & Nock, M. K. Why can’t we be more idiographic in our research? Perspect. Psychol. Sci. J. Assoc. Psychol. Sci. 4, 19–21 (2009).

    Article 

    Google Scholar 

  • Ozomaro, U., Wahlestedt, C. & Nemeroff, C. B. Personalized medicine in psychiatry: problems and promises. BMC Med. 11, 132 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simon, G. E. & Perlis, R. H. Personalized medicine for depression: can we match patients with treatments? Am. J. Psychiatry 167, 1445–1455 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaurin, A., Dombrovski, A. Y., Hallquist, M. N. & Wright, A. G. Integrating a functional view on suicide risk into idiographic statistical models. Behav. Res. Ther. 150, 104012 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Soyster, P. D., Ashlock, L. & Fisher, A. J. Pooled and person-specific machine learning models for predicting future alcohol consumption, craving, and wanting to drink: a demonstration of parallel utility. Psychol. Addict. Behav. 36, 296–306 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Fisher, A. J. & Soyster, P. D. Generating accurate personalized predictions of future behavior: a smoking exemplar. Preprint at (2019).

  • Beck, E. D. & Jackson, J. J. Personalized prediction of behaviors and experiences: an idiographic person–situation test. Psychol. Sci. 33, 1767–1782 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nahum-Shani, I. et al. Just-in-Time Adaptive Interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann. Behav. Med. 52, 446–462 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Howe, E. S. & Fisher, A. J. Identifying and predicting posttraumatic stress symptom states in adults with posttraumatic stress disorder. J. Trauma. Stress 35, 1508–1520 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Academic Press, 2013).

  • Wang, S. B. et al. Idiographic prediction of suicidal thoughts (GitHub); https://github.com/ShirleyBWang/idiographic_prediction

  • Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (MIT Press, 2006).

  • Roberts, S. et al. Gaussian processes for time-series modelling. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 371, 20110550 (2013).

    Google Scholar 

  • Schulz, E., Speekenbrink, M. & Krause, A. A tutorial on Gaussian process regression: modelling, exploring and exploiting functions. J. Math. Psychol. 85, 1–16 (2018).

    Article 

    Google Scholar 

  • Torous, J. & Hsin, H. Empowering the digital therapeutic relationship: virtual clinics for digital health interventions. Npj Digit. Med. 1, 16 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodriguez-Villa, E. et al. The digital clinic: implementing technology and augmenting care for mental health. Gen. Hosp. Psychiatry 66, 59–66 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coppersmith, D. D. L. et al. Mapping the timescale of suicidal thinking. Proc. Natl Acad. Sci. USA 120, e2215434120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Intille, S., Haynes, C., Maniar, D., Ponnada, A. & Manjourides, J. μEMA: microinteraction-based Ecological Momentary Assessment (EMA) using a smartwatch. Proc. ACM Int. Conf. Ubiquitous Comput. 2016, 1124–1128 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ponnada, A., Haynes, C., Maniar, D., Manjourides, J. & Intille, S. Microinteraction ecological momentary assessment response rates: effect of microinteractions or the smartwatch? Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 92 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adams, L. et al. Assessing the real-time influence of racism-related stress and suicidality among black men: protocol for an ecological momentary assessment study. JMIR Res. Protoc. 10, e31241 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alvarez, K., Polanco-Roman, L., Samuel Breslow, A. & Molock, S. Structural racism and suicide prevention for ethnoracially minoritized youth: a conceptual framework and illustration across systems. Am. J. Psychiatry 179, 422–433 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kleiman, E. M. et al. Can passive measurement of physiological distress help better predict suicidal thinking?. Transl. Psychiatry 11, 611 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nock, M. K., Holmberg, E. B., Photos, V. I. & Michel, B. D. Self-injurious thoughts and behaviors interview: development, reliability and validity in an adolescent sample. Psychol. Assess. 19, 309–317 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Fortgang, R. G. et al. Increase in suicidal thinking during COVID-19. Clin. Psychol. Sci. 9, 482–488 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bentley, K. H. et al. Do patterns and types of negative affect during hospitalization predict short-term post-discharge suicidal thoughts and behaviors? Affect. Sci. 2, 484–494 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mou, D. et al. Negative affect is more strongly associated with suicidal thinking among suicidal patients with borderline personality disorder than those without. J. Psychiatr. Res. 104, 198–201 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2019); https://www.R-project.org/

  • Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article 

    Google Scholar 

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  • Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar 

  • Kuhn, M. & Wickham, H. Tidymodels: a collection of packages for modeling and machine learning using tidyverse principles (Tidymodels, 2020); https://www.tidymodels.org

  • Kuhn, M. & Johnson, K. Applied Predictive Modeling (Springer, 2013).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *