Stitt, A. W. et al. The progress in understanding and treatment of diabetic retinopathy. Prog. Retin. Eye Res. 51, 156–186. (2016).
Google Scholar
Gadekallu, T. et al. Deep neural networks to predict diabetic retinopathy. J. Ambient Intell. Hum. Comput. 14, 5407–5420. (2023).
Google Scholar
Silva, P. S. et al. Automated machine learning for predicting diabetic retinopathy progression from ultra-widefield retinal images. JAMA Ophthalmol. 142, 171–178. (2024).
Google Scholar
Grzybowski, A. et al. Artificial intelligence for diabetic retinopathy screening using color retinal photographs: From development to deployment. Ophthalmol. Ther. 12, 1419–1437. (2023).
Google Scholar
Vijayan, M. A regression-based approach to diabetic retinopathy diagnosis using efficientnet. Diagnostics 13, 774. (2023).
Google Scholar
Ariza López, L. & Ramos, S. Diabetic retinopathy diagnosis using deep learning (2023).
Pramudhita, D. A., Azzahra, F., Arfat, I. K., Magdalena, R. & Saidah, S. Strawberry plant diseases classification using CNN based on MobileNetV3-large and efficientnet-B0 architecture. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika JITEKI 9, 522–534. (2023).
Google Scholar
Alhijaj, J. A. & Khudeyer, R. S. Integration of efficientnetb0 and machine learning for fingerprint classification. Informatica[SPACE] (2023).
Google Scholar
Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016).
Google Scholar
Ting, D. S. W. et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318, 2211–2223 (2017).
Google Scholar
Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N. & Folk, J. C. Pivotal trial of an autonomous ai-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Med. 1, 1–8 (2018).
Google Scholar
Li, Z. et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs. Diabetes Care 42, 1584–1589 (2019).
Bellemo, V. et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: A clinical validation study. Lancet Digit. Health 1, e35–e44 (2019).
Google Scholar
Bhaskaranand, M. et al. Automated diabetic retinopathy screening and monitoring using retinal fundus image analysis. J. Diabetes Sci. Technol. 13, 438–446 (2019).
Sahlsten, J. et al. Development and validation of a deep learning algorithm for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes: A population-based study. Acta Ophthalmol. 98, e20–e28 (2020).
Raman, R. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy using non-mydriatic retinal fundus images archived in electronic health records. Indian J. Ophthalmol. 68, 398–403 (2020).
Takahashi, H. et al. Application of deep learning to the determination of diabetic retinopathy and glaucoma based on retinal fundus photographs. Jpn. J. Ophthalmol. 64, 368–375 (2020).
Burlina, P. M. et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 138, 652–659 (2020).
Huang, K., Zhang, L., Chen, Y., Xie, J. & Li, L. Saliency-guided self-supervised transformer for diabetic retinopathy grading. IEEE Trans. Med. Imaging[SPACE] (2024).
Google Scholar
Thanikachalam, R., Sivakumar, M., Kalyani, M. & Kumar, H. Optimized deep convolutional neural networks for diabetic retinopathy and macular edema detection. Comput. Biol. Med.[SPACE] (2024).
Google Scholar
Bodapati, S. & Balaji, K. Self-adaptive stacking ensemble with attention mechanisms for diabetic retinopathy severity prediction. Artif. Intell. Med.[SPACE] (2024).
Google Scholar
Bhati, S., Singh, P. & Thakur, R. Idanet: Interpretable dual attention network for diabetic retinopathy grading. IEEE Access[SPACE] (2024).
Google Scholar
Sivapriya, R., Chithra, M. & Ragavendran, C. Microvascular structure analysis in diabetic retinopathy classification using deep learning. IEEE J. Biomed. Health Inform.[SPACE] (2024).
Google Scholar
Ohri, P. & Kumar, R. Supervised fine-tuned approach for diabetic retinopathy detection using transfer learning. J. Digit. Imaging[SPACE] (2024).
Google Scholar
Luo, Z., Wang, F. & Zheng, Q. Deep CNN model with multi-scale feature fusion for diabetic retinopathy detection. Expert Syst. Appl.[SPACE] (2024).
Google Scholar
Romero-Oraá, M. T., Martinez, J., Gonzalez, R. & Gonzalez, M. Attention-based framework for diabetic retinopathy grading in fundus images. Biomed. Signal Process. Control[SPACE] (2024).
Google Scholar
Zhang, Y., Wang, Y., Wu, X. & Li, J. Semi-supervised contrastive learning with saliency maps for diabetic retinopathy classification. Pattern Recogn.[SPACE] (2024).
Google Scholar
Wong, L., Yang, H. & Zheng, Y. Transfer learning with feature-weighted ECOC ensembles for diabetic retinopathy grading. Comput. Biol. Med.[SPACE] (2023).
Google Scholar
Bilal, A., Zhu, L., Deng, A., Lu, H. & Wu, N. Ai-based automatic detection and classification of diabetic retinopathy using u-net and deep learning. Symmetry 14, 1427. (2022).
Google Scholar
Bilal, A., Sun, G., Li, Y., Mazhar, S. & Khan, A. Diabetic retinopathy detection and classification using mixed models for a disease grading database. IEEE Access[SPACE] (2021).
Google Scholar
Bilal, A., Mazhar, S., Imran, A. & Latif, J. A transfer learning and u-net-based automatic detection of diabetic retinopathy from fundus images. Comput. Methods Biomech. Biomed. Eng. Imaging Visualiz.[SPACE] (2022).
Google Scholar
Bilal, A., Sun, G., Mazhar, S. & Imran, A. Improved grey wolf optimization-based feature selection and classification using CNN for diabetic retinopathy detection. 1–14 (2022).
Bilal, A., Sun, G. & Mazhar, S. Diabetic retinopathy detection using weighted filters and classification using CNN. (2021).
Bilal, A. et al. Improved support vector machine based on CNN-SVD for vision-threatening diabetic retinopathy detection and classification. PLoS One 19, e0295951. (2024).
Google Scholar
Bilal, A., Liu, X., Baig, T., Long, H. & Shafiq, M. Edgesvdnet: 5g-enabled detection and classification of vision-threatening diabetic retinopathy in retinal fundus images. Electronics 12, 4094. (2023).
Google Scholar
Bilal, A., Liu, X., Shafiq, M., Ahmed, Z. & Long, H. Nimeq-sacnet: A novel self-attention precision medicine model for vision-threatening diabetic retinopathy using image data. Comput. Biol. Med. 171, 108099. (2024).
Google Scholar
Gupta, B. B., Gaurav, A. & Panigrahi, P. K. Analysis of security and privacy issues of information management of big data in B2B based healthcare systems. J. Bus. Res. 162, 113859 (2023).
Google Scholar
Zaidan, A. A., AlSattar, H. A., Qahtan, S., Deveci, M. & Pamucar, D. Secure decision approach for internet of healthcare things smart systems-based blockchain. IEEE Internet of Things Journal (2023).
Zhou, Y., Song, L., Liu, Y. & Vijayakumar, P. A privacy-preserving logistic regression-based diagnosis scheme for digital healthcare. Futur. Gener. Comput. Syst. 144, 63–73 (2023).
Google Scholar
Singh, S. K. Linux yourself: Concept and programming 1st edn. (Chapman and Hall/CRC, Cham, 2021).
Google Scholar
Chui, K. T. et al. Multiround transfer learning and modified generative adversarial network for lung cancer detection. Int. J. Intell. Syst. 2023, 6376275 (2023).
Google Scholar
Hammad, M., Abd El-Latif, A. A., Hussain, A. & Abd El-Samie, F. E. Deep learning models for arrhythmia detection in IoT healthcare applications. Comput. Electr. Eng. 100, 108011 (2022).
Google Scholar
Sutomo, H. I. Identification of organic and non-organic waste with computer image recognition using convolutionalneural network with efficient-net-b0 architecture. J. Appl. Intell. Syst. 8(3), 320–330. (2023).
Google Scholar
Y, V., Billakanti, N., Veeravalli, K., N, A. D. R. & Kota, L. Early detection of casava plant leaf diseases using efficientnet-b0. In 2022 IEEE Delhi Section Conference (DELCON), 1–5, (2022).
Agarwal, V. Complete architectural details of all efficientnet models. Medium (2021). https://towardsdatascience.com/complete-architectural-details-of-all-efficientnet-models-5fd5b736142.
TanLikesMath. Diabetic retinopathy – resized data. Kaggle, R-retinopathy, (20243).
Yang, L. & Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 415, 295–316. (2020).
Google Scholar
Rathee, G., Saini, H., Garg, S., Choi, B. J. & Hassan, M. M. A secure data e-governance for healthcare application in cyber physical systems. Int. J. Semantic Web Inf. Syst. 20, 1–17 (2024).
Google Scholar
link