Integrative deep learning of spatial multi-omics with SWITCH

Integrative deep learning of spatial multi-omics with SWITCH

  • Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article 

    Google Scholar 

  • Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article 

    Google Scholar 

  • Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681 (2020).

    Article 

    Google Scholar 

  • Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792 (2022).

    Article 

    Google Scholar 

  • Deng, Y. et al. Spatial-CUT&tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).

    Article 

    Google Scholar 

  • Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609, 375–383 (2022).

    Article 

    Google Scholar 

  • Lu, T., Ang, C. E. & Zhuang, X. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell 185, 4448–4464 (2022).

    Article 

    Google Scholar 

  • Goltsev, Y. et al. Deep profiling of mouse splenic architecture with codex multiplexed imaging. Cell 174, 968–981 (2018).

    Article 

    Google Scholar 

  • He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).

    Article 

    Google Scholar 

  • Liu, Y. et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nat. Biotechnol. 41, 1405–1409 (2023).

    Article 

    Google Scholar 

  • Zhang, D. et al. Spatial epigenome–transcriptome co-profiling of mammalian tissues. Nature 616, 113–122 (2023).

    Article 

    Google Scholar 

  • Jiang, F. et al. Simultaneous profiling of spatial gene expression and chromatin accessibility during mouse brain development. Nat. Methods 20, 1048–1057 (2023).

    Article 

    Google Scholar 

  • Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    Article 

    Google Scholar 

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article 

    Google Scholar 

  • Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–1887 (2019).

    Article 

    Google Scholar 

  • Dou, J. et al. Bi-order multimodal integration of single-cell data. Genome Biol. 23, 112 (2022).

    Article 

    Google Scholar 

  • Cao, Z. J. & Gao, G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nat. Biotechnol. 40, 1458–1466 (2022).

    Article 

    Google Scholar 

  • Xiong, L. et al. Online single-cell data integration through projecting heterogeneous datasets into a common cell-embedding space. Nat. Commun. 13, 6118 (2022).

    Article 

    Google Scholar 

  • Chen, H., Ryu, J., Vinyard, M. E., Lerer, A. & Pinello, L. SIMBA: single-cell embedding along with features. Nat. Methods 21, 1003–1013 (2024).

    Article 

    Google Scholar 

  • Chen, S. et al. Integration of spatial and single-cell data across modalities with weakly linked features. Nat. Biotechnol. 42, 1096–1106 (2024).

    Article 

    Google Scholar 

  • Samaran, J., Peyré, G. & Cantini, L. scConfluence: single-cell diagonal integration with regularized inverse optimal transport on weakly connected features. Nat. Commun. 15, 7762 (2024).

    Article 

    Google Scholar 

  • Tang, Z. et al. Modal-nexus auto-encoder for multi-modality cellular data integration and imputation. Nat. Commun. 15, 9021 (2024).

    Article 

    Google Scholar 

  • You, Y. et al. Systematic comparison of sequencing-based spatial transcriptomic methods. Nat. Methods 21, 1743–1754 (2024).

    Article 

    Google Scholar 

  • Cohen Kalafut, N., Huang, X. & Wang, D. Joint variational autoencoders for multimodal imputation and embedding. Nat. Mach. Intell. 5, 631–642 (2023).

    Article 

    Google Scholar 

  • Ashuach, T. et al. MultiVI: deep generative model for the integration of multimodal data. Nat. Methods 20, 1222–1231 (2023).

    Article 

    Google Scholar 

  • Cao, Y. et al. scButterfly: a versatile single-cell cross-modality translation method via dual-aligned variational autoencoders. Nat. Commun. 15, 2973 (2024).

    Article 

    Google Scholar 

  • Wu, K. E., Yost, K. E., Chang, H. Y. & Zou, J. Babel enables cross-modality translation between multiomic profiles at single-cell resolution. Proc. Natl Acad. Sci. USA 118, e2023070118 (2021).

    Article 

    Google Scholar 

  • Liu, J., Huang, Y., Singh, R., Vert, J. P. & Noble, W. S. Jointly embedding multiple single-cell omics measurements. Algorithms Bioinform. 143, 10 (2019).

    Google Scholar 

  • Sunkin, S. M. et al. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res. 41, D996–D1008 (2012).

    Article 

    Google Scholar 

  • Ma, N. X., Puls, B. & Chen, G. Transcriptomic analyses of NeuroD1-mediated astrocyte-to-neuron conversion. Dev. Neurobiol. 82, 375–391 (2022).

    Article 

    Google Scholar 

  • Zhou, Y. et al. Cooperative integration of spatially resolved multi-omics data with COSMOS. Nature Commun. 16, 27 (2025).

    Article 

    Google Scholar 

  • Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article 

    Google Scholar 

  • Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).

    Article 

    Google Scholar 

  • Bayam, E. et al. Genome-wide target analysis of NEUROD2 provides new insights into regulation of cortical projection neuron migration and differentiation. BMC Genom. 16, 681 (2015).

    Article 

    Google Scholar 

  • Bormuth, I. et al. Neuronal basic helix–loop–helix proteins Neurod2/6 regulate cortical commissure formation before midline interactions. J. Neurosci. 33, 641–651 (2013).

    Article 

    Google Scholar 

  • Hahn, M. A. et al. Reprogramming of DNA methylation at NEURO2-bound sequences during cortical neuron differentiation. Sci. Adv. 5, eaax0080 (2019).

    Article 

    Google Scholar 

  • Zu, S. et al. Single-cell analysis of chromatin accessibility in the adult mouse brain. Nature 624, 378–389 (2023).

    Article 

    Google Scholar 

  • Chai, H et al. Tri-omic single-cell mapping of the 3D epigenome and transcriptome in whole mouse brains throughout the lifespan. Nat. Methods 22, 994–1007 (2025).

  • Bogutz, A. B. et al. Transcription factor ASCL2 is required for development of the glycogen trophoblast cell lineage. PLoS Genet. 14, e1007587 (2018).

    Article 

    Google Scholar 

  • Kunke, M. et al. SOX10-mediated regulation of enteric glial phenotype in vitro and its relevance for neuroinflammatory disorders. J. Mol. Neurosci. 75, 26 (2025).

    Article 

    Google Scholar 

  • Forrest, M. P. et al. The psychiatric risk gene transcription factor 4 (TCF4) regulates neurodevelopmental pathways associated with schizophrenia, autism, and intellectual disability. Schizophr. Bull. 44, 1100–1110 (2018).

    Article 

    Google Scholar 

  • Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).

    Article 

    Google Scholar 

  • Li, Z. Benchmark datasets for SWITCH. Zenodo (2025).

  • Zhongzhan, L. SWITCH: a deep generative model for spatial multi-omics integration and cross-modal prediction. Zenodo (2025).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *