Machine learning-accelerated discovery of heat-resistant polysulfates for electrostatic energy storage

Machine learning-accelerated discovery of heat-resistant polysulfates for electrostatic energy storage

  • Meng, N. et al. Ultrahigh β-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat. Commun. 10, 4535 (2019).

    Article 

    Google Scholar 

  • Tawade, B. V. et al. Polymer-grafted nanoparticles with variable grafting densities for high energy density polymeric nanocomposite dielectric capacitors. JACS Au 3, 1365–1375 (2023).

    Article 

    Google Scholar 

  • Wu, X., Chen, X., Zhang, Q. M. & Tan, D. Q. Advanced dielectric polymers for energy storage. Energy Storage Mater. 44, 29–47 (2022).

    Article 

    Google Scholar 

  • Zha, J.-W. et al. Polymer dielectrics for high-temperature energy storage: constructing carrier traps. Prog. Mater. Sci. 140, 101208 (2023).

    Article 

    Google Scholar 

  • Luo, H. et al. Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 48, 4424–4465 (2019).

    Article 

    Google Scholar 

  • Zhang, Q. et al. High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends. Matter 4, 2448–2459 (2021).

    Article 

    Google Scholar 

  • Chen, J. et al. Engineering the dielectric constants of polymers: from molecular to mesoscopic scales. Adv. Mater. (2023).

  • Wu, C. et al. Flexible temperature‐invariant polymer dielectrics with large bandgap. Adv. Mater. 32, 2000499 (2020).

    Article 

    Google Scholar 

  • Feng, Q.-K. et al. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 122, 3820–3878 (2022).

    Article 

    Google Scholar 

  • Yang, M. et al. Polymer nanocomposite dielectrics for capacitive energy storage. Nat. Nanotechnol. 19, 588–603 (2024).

    Article 

    Google Scholar 

  • Liu, X.-J., Zheng, M.-S., Chen, G., Dang, Z.-M. & Zha, J.-W. High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties. Energy Environ. Sci. 15, 56–81 (2022).

    Article 

    Google Scholar 

  • Song, J. et al. Alicyclic polyimides with large band gaps exhibit superior high-temperature capacitive energy storage. Mater. Horiz. 10, 2139–2148 (2023).

    Article 

    Google Scholar 

  • Ren, W. et al. Metallized stacked polymer film capacitors for high-temperature capacitive energy storage. Energy Storage Mater. 65, 103095 (2024).

    Article 

    Google Scholar 

  • Dong, J. et al. Scalable high-permittivity polyimide copolymer with ultrahigh high-temperature capacitive performance enabled by molecular engineering. Adv. Energy Mater. 14, 2303732 (2024).

    Article 

    Google Scholar 

  • Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018).

    Article 

    Google Scholar 

  • Martin, T. B. & Audus, D. J. Emerging trends in machine learning: a polymer perspective. ACS Polym. Au 3, 239–258 (2023).

    Article 

    Google Scholar 

  • Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine learning in materials informatics: recent applications and prospects. npj Comput. Mater. 3, 54 (2017).

    Article 

    Google Scholar 

  • Kuenneth, C. & Ramprasad, R. polyBERT: a chemical language model to enable full machine-driven ultrafast polymer informatics. Nat. Commun. 14, 4099 (2023).

    Article 

    Google Scholar 

  • Liu, Y. et al. Generative artificial intelligence and its applications in materials science: current situation and future perspectives. J. Materiomics 9, 798–816 (2023).

    Article 

    Google Scholar 

  • Shen, Z.-H. et al. Machine learning in energy storage materials. Interdiscip. Mater. 1, 175–195 (2022).

    Google Scholar 

  • Chen, L. et al. Polymer informatics: current status and critical next steps. Mater. Sci. Eng. R: Rep. 144, 100595 (2021).

    Article 

    Google Scholar 

  • Dave, A. et al. Autonomous discovery of battery electrolytes with robotic experimentation and machine learning. Cell Rep. Phys. Sci. 1, 100264 (2020).

    Article 

    Google Scholar 

  • Boyd, P. G. et al. Data-driven design of metal–organic frameworks for wet flue gas CO2 capture. Nature 576, 253–256 (2019).

    Article 

    Google Scholar 

  • Kang, Y., Park, H., Smit, B. & Kim, J. A multi-modal pre-training transformer for universal transfer learning in metal–organic frameworks. Nat. Mach. Intell. 5, 309–318 (2023).

    Article 

    Google Scholar 

  • Luo, Y. et al. MOF synthesis prediction enabled by automatic data mining and machine learning. Angew. Chem. Int. Ed. 134, e202200242 (2022).

    Article 

    Google Scholar 

  • Rosen, A. S. et al. High-throughput predictions of metal–organic framework electronic properties: theoretical challenges, graph neural networks, and data exploration. npj Comput. Mater. 8, 112 (2022).

    Article 

    Google Scholar 

  • Rao, Z. et al. Machine learning–enabled high-entropy alloy discovery. Science 378, 78–85 (2022).

    Article 

    Google Scholar 

  • Yao, Y. et al. High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery. Science 376, 6589 (2022).

    Article 

    Google Scholar 

  • Wang, R. et al. Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage. Nat. Commun. 14, 2406 (2023).

    Article 

    Google Scholar 

  • Tao, L. et al. Discovery of multi-functional polyimides through high-throughput screening using explainable machine learning. Chem. Eng. J. 465, 142949 (2023).

    Article 

    Google Scholar 

  • Wu, C. et al. Dielectric polymers tolerant to electric field and temperature extremes: integration of phenomenology, informatics, and experimental validation. ACS Appl. Mater. Interfaces 13, 53416–53424 (2021).

    Article 

    Google Scholar 

  • Yang, C., Flynn, J. P. & Niu, J. Facile synthesis of sequence‐regulated synthetic polymers using orthogonal SuFEx and CuAAC click reactions. Angew. Chem. Int. Ed. 57, 16194 (2018).

    Article 

    Google Scholar 

  • Geng, Z., Shin, J. J., Xi, Y. & Hawker, C. J. Click chemistry strategies for the accelerated synthesis of functional macromolecules. J. Polym. Sci. 59, 963–1042 (2021).

    Article 

    Google Scholar 

  • Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article 

    Google Scholar 

  • Homer, J. A. et al. Sulfur fluoride exchange. Nat. Rev. Methods Prim. 3, 58 (2023).

    Article 

    Google Scholar 

  • Li, H. et al. High-performing polysulfate dielectrics for electrostatic energy storage under harsh conditions. Joule 7, 95–111 (2023).

    Article 

    Google Scholar 

  • Gao, B. et al. Bifluoride-catalysed sulfur (VI) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates. Nat. Chem. 9, 1083–1088 (2017).

    Article 

    Google Scholar 

  • Kim, H. et al. Chain-growth sulfur(VI) fluoride exchange polycondensation: molecular weight control and synthesis of degradable polysulfates. ACS Cent. Sci. 7, 1919–1928 (2021).

    Article 

    Google Scholar 

  • Wang, H. et al. SuFEx-based polysulfonate formation from ethenesulfonyl fluoride–amine adducts. Angew. Chem. Int. Ed. 56, 11203 (2017).

    Article 

    Google Scholar 

  • Tao, L., Varshney, V. & Li, Y. Benchmarking machine learning models for polymer informatics: an example of glass transition temperature. J. Chem. Inf. Model. 61, 5395–5413 (2021).

    Article 

    Google Scholar 

  • Liu, Y., Guo, B., Zou, X., Li, Y. & Shi, S. Machine learning assisted materials design and discovery for rechargeable batteries. Energy Storage Mater. 31, 434–450 (2020).

    Article 

    Google Scholar 

  • Liu, Y., Zhao, T., Ju, W. & Shi, S. Materials discovery and design using machine learning. J. Materiomics 3, 159–177 (2017).

    Article 

    Google Scholar 

  • Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

    Article 

    Google Scholar 

  • Landrum, G. RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling. v.2022.9.5 (2022); https://www.rdkit.org

  • Damewood, J. et al. Representations of materials for machine learning. Annu. Rev. Mater. Res. 53, 399–426 (2023).

    Article 

    Google Scholar 

  • Atz, K., Grisoni, F. & Schneider, G. Geometric deep learning on molecular representations. Nat. Mach. Intell. 3, 1023–1032 (2021).

    Article 

    Google Scholar 

  • Tao, L., Chen, G. & Li, Y. Machine learning discovery of high-temperature polymers. Patterns 2, 100225 (2021).

    Article 

    Google Scholar 

  • Kim, C., Chandrasekaran, A., Huan, T. D., Das, D. & Ramprasad, R. Polymer genome: a data-powered polymer informatics platform for property predictions. J. Phys. Chem. C. 122, 17575–17585 (2018).

    Article 

    Google Scholar 

  • Zhu, W., Li, F., Liu, J., Ma, X. & Jiang, X. Nucleophilic construction of sulfate bond: a simplified access to polysulfates and polysulfonates. React. Chem. Eng. 4, 2074–2080 (2019).

    Article 

    Google Scholar 

  • Ertl, P. & Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminformatics 1, 8 (2009).

    Article 

    Google Scholar 

  • Wu, S. et al. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. npj Comput. Mater. 5, 66 (2019).

    Article 

    Google Scholar 

  • Deshmukh, A. A. et al. Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification. Energy Environ. Sci. 15, 1307–1314 (2022).

    Article 

    Google Scholar 

  • Chen, J. et al. Ladderphane copolymers for high-temperature capacitive energy storage. Nature 615, 62–66 (2023).

    Article 

    Google Scholar 

  • Qin, H. et al. High-temperature polymer dielectrics with superior capacitive energy storage performance. Chem. Eng. J. 461, 142068 (2023).

    Article 

    Google Scholar 

  • Chen, J. et al. Aromatic-free polymers based all-organic dielectrics with breakdown self-healing for high-temperature capacitive energy storage. Adv. Mater. 35, 2306562 (2023).

    Article 

    Google Scholar 

  • Zhang, G., Li, Q., Allahyarov, E., Li, Y. & Zhu, L. Challenges and opportunities of polymer nanodielectrics for capacitive energy storage. ACS Appl. Mater. Interfaces 13, 37939–37960 (2021).

    Article 

    Google Scholar 

  • Li, Q. et al. High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219–243 (2018).

    Article 

    Google Scholar 

  • Zhang, T. et al. Recent progress in polymer dielectric energy storage: from film fabrication and modification to capacitor performance and application. Prog. Mater. Sci. 140, 101207 (2023).

    Article 

    Google Scholar 

  • Li, Q. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015).

    Article 

    Google Scholar 

  • Wei, J. & Zhu, L. Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog. Polym. Sci. 106, 101254 (2020).

    Article 

    Google Scholar 

  • Zha, J.-W., Zheng, M.-S., Fan, B.-H. & Dang, Z.-M. Polymer-based dielectrics with high permittivity for electric energy storage: a review. Nano Energy 89, 106438 (2021).

    Article 

    Google Scholar 

  • Li, H. et al. Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 50, 6369–6400 (2021).

    Article 

    Google Scholar 

  • Zhang, Z., Wang, D. H., Litt, M. H., Tan, L.-S. & Zhu, L. High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide). Angew. Chem. Int. Ed. 57, 1528–1531 (2018).

    Article 

    Google Scholar 

  • Li, Z. et al. Probing electronic band structures of dielectric polymers via pre-breakdown conduction. Adv. Mater. (2024).

  • Ju, T. et al. Effect of glass transition temperature on enhanced dielectric breakdown strength and lifetime of multilayer polymer films. ACS Appl. Mater. Interfaces 16, 795–806 (2024).

    Article 

    Google Scholar 

  • Yang, M. et al. Roll-to-roll fabricated polymer composites filled with subnanosheets exhibiting high energy density and cyclic stability at 200 °C. Nat. Energy 9, 143–153 (2024).

    Article 

    Google Scholar 

  • Liu, Y. et al. Data quantity governance for machine learning in materials science. Natl. Sci. Rev. 10, nwad125 (2023).

  • Chen, H., Chen, J. & Ding, J. Data evaluation and enhancement for quality improvement of machine learning. IEEE Trans. Reliab. 70, 831–847 (2021).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *