Machine learning the electric field response of condensed phase systems using perturbed neural network potentials

Machine learning the electric field response of condensed phase systems using perturbed neural network potentials

  • Clarke, D., Whitney, H., Sutton, G. & Robert, D. Detection and learning of floral electric fields by bumblebees. Science 340, 66–69 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Futera, Z., Tse, J. S. & English, N. J. Possibility of realizing superionic ice vii in external electric fields of planetary bodies. Sci. Adv. 6, eaaz2915 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Besalú-Sala, P., Solà, M., Luis, J. M. & Torrent-Sucarrat, M. Fast and simple evaluation of the catalysis and selectivity induced by external electric fields. ACS Catal. 11, 14467–14479 (2021).

    Article 

    Google Scholar 

  • Shaik, S., Danovich, D., Joy, J., Wang, Z. & Stuyver, T. Electric-field mediated chemistry: Uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 142, 12551–12562 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rycroft, M. J., Israelsson, S. & Price, C. The global atmospheric electric circuit, solar activity and climate change. J. Atmos. Sol. Terr. Phys. 62, 1563–1576 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Toney, M. F. et al. Voltage-dependent ordering of water molecules at an electrode-electrolyte interface. Nature 368, 444–446 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hao, H., Leven, I. & Head-Gordon, T. Can electric fields drive chemistry for an aqueous microdroplet? Nat. Commun. 13, 280 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cassone, G., Sponer, J., Trusso, S. & Saija, F. Ab initio spectroscopy of water under electric fields. Phys. Chem. Chem. Phys. 21, 21205–21212 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cassone, G. & Martelli, F. Electrofreezing of liquid water at ambient conditions. Nat. Commun. 15, 1856 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schirmer, B. & Grimme, S. Electric field induced activation of h2-can dft do the job? Chem. Commun. 46, 7942–7944 (2010).

    Article 
    CAS 

    Google Scholar 

  • Ashton, M., Mishra, A., Neugebauer, J. & Freysoldt, C. Ab initio description of bond breaking in large electric fields. Phys. Rev. Lett. 124, 176801 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stengel, M., Spaldin, N. A. & Vanderbilt, D. Electric displacement as the fundamental variable in electronic-structure calculations. Nat. Phys. 5, 304–308 (2009).

    Article 
    CAS 

    Google Scholar 

  • Zhang, C. & Sprik, M. Computing the dielectric constant of liquid water at constant dielectric displacement. Phys. Rev. B 93, 144201 (2016).

    Article 
    ADS 

    Google Scholar 

  • Sayer, T., Zhang, C. & Sprik, M. Charge compensation at the interface between the polar nacl(111) surface and a nacl aqueous solution. J. Chem. Phys. 147, 104702 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Cox, S. J. & Sprik, M. Finite field formalism for bulk electrolyte solutions. J. Chem. Phys. 151, 064506 (2019).

    Article 
    ADS 

    Google Scholar 

  • Marx, D. & Hutter, J.Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, Cambridge, 2009).

  • English, N. J. & Waldron, C. J. Perspectives on external electric fields in molecular simulation: progress, prospects and challenges. Phys. Chem. Chem. Phys. 17, 12407–12440 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elgabarty, H., Kaliannan, N. K. & Kühne, T. D. Enhancement of the local asymmetry in the hydrogen bond network of liquid water by an ultrafast electric field pulse. Sci. Rep. 9, 10002 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elgabarty, H. et al. Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation. Sci. Adv. 6, eaay7074 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, C., Sayer, T., Hutter, J. & Sprik, M. Modelling electrochemical systems with finite field molecular dynamics. J. Phys. Energy 2, 032005 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jia, M., Zhang, C. & Cheng, J. Origin of asymmetric electric double layers at electrified oxide/electrolyte interfaces. J. Phys. Chem. Lett. 12, 4616–4622 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Futera, Z. & English, N. J. Water breakup at fe2o3–hematite/water interfaces: Influence of external electric fields from nonequilibrium ab initio molecular dynamics. J. Phys. Chem. Lett. 12, 6818–6826 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, J., Zhang, Y., Li, M., Groß, A. & Sakong, S. Comparing ab initio molecular dynamics and a semiclassical grand canonical scheme for the electric double layer of the pt(111)/water interface. J. Phys. Chem. Lett. 14, 2354–2363 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Behler, J. Four generations of high-dimensional neural network potentials. Chem. Rev. 121, 10037–10072 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bereau, T., DiStasio, J. R. A., Tkatchenko, A. & von Lilienfeld, O. A. Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning. J. Chem. Phys. 148, 241706 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Zinovjev, K. Electrostatic embedding of machine learning potentials. J. Chem. Theory Comput. 19, 1888–1897 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Efficient and accurate simulations of vibrational and electronic spectra with symmetry-preserving neural network models for tensorial properties. J. Phys. Chem. B 124, 7284–7290 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, L. et al. Deep neural network for the dielectric response of insulators. Phys. Rev. B 102, 041121 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sommers, G. M., Calegari Andrade, M. F., Zhang, L., Wang, H. & Car, R. Raman spectrum and polarizability of liquid water from deep neural networks. Phys. Chem. Chem. Phys. 22, 10592–10602 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schütt, K., Unke, O. & Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. In Proceedings of the 38th International Conference on Machine Learning Research 9377–9388 (2021).

  • Wilkins, D. M. et al. Accurate molecular polarizabilities with coupled cluster theory and machine learning. Proc. Natl. Acad. Sci. USA 116, 3401–3406 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kapil, V., Wilkins, D. M., Lan, J. & Ceriotti, M. Inexpensive modeling of quantum dynamics using path integral generalized langevin equation thermostats. J. Chem. Phys. 152, 124104 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shepherd, S., Lan, J., Wilkins, D. M. & Kapil, V. Efficient quantum vibrational spectroscopy of water with high-order path integrals: From bulk to interfaces. J. Phys. Chem. Lett. 12, 9108–9114 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beckmann, R., Brieuc, F., Schran, C. & Marx, D. Infrared spectra at coupled cluster accuracy from neural network representations. J. Chem. Theory Comput. 18, 5492–5501 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schienbein, P. Spectroscopy from machine learning by accurately representing the atomic polar tensor. J. Chem. Theory Comput. 19, 705–712 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Christensen, A. S., Faber, F. A. & von Lilienfeld, O. A. Operators in quantum machine learning: Response properties in chemical space. J. Chem. Phys. 150, 064105 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Gastegger, M., Schütt, K. T. & Müller, K.-R. Machine learning of solvent effects on molecular spectra and reactions. Chem. Sci. 12, 11473–11483 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, A. & Remsing, R. C. Self-consistent determination of long-range electrostatics in neural network potentials. Nat. Commun. 13, 1572 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shao, Y., Andersson, L., Knijff, L. & Zhang, C. Finite-field coupling via learning the charge response kernel. Electron. Struct. 4, 014012 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, Y. & Jiang, B. Universal machine learning for the response of atomistic systems to external fields. Nat. Commun. 14, 6424 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Person, W. B. & Newton, J. H. Dipole moment derivatives and infrared intensities. i. polar tensors. J. Chem. Phys. 61, 1040–1049 (1974).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schran, C., Brezina, K. & Marsalek, O. Committee neural network potentials control generalization errors and enable active learning. J. Chem. Phys. 153, 104105 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Szabo, A. & Ostlund, N. S. Modern Quantum Chemistry (Dover Publications, Inc., 1996).

  • Resta, R. Theory of the electric polarization in crystals. Ferroelectrics 136, 51–55 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Resta, R. & Vanderbilt, D. Theory of polarization: a modern approach. In Physics of Ferroelectrics: a Modern Perspective, 31–68 (Springer, 2007).

  • Natarajan, S. K. & Behler, J. Neural network molecular dynamics simulations of solid-liquid interfaces: water at low-index copper surfaces. Phys. Chem. Chem. Phys. 18, 28704–28725 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schienbein, P. & Blumberger, J. Nanosecond solvation dynamics of the hematite/liquid water interface at hybrid dft accuracy using committee neural network potentials. Phys. Chem. Chem. Phys. 24, 15365–15375 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schran, C. et al. Machine learning potentials for complex aqueous systems made simple. Proc. Natl. Acad. Sci. USA 118, e2110077118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montenegro, A. et al. Asymmetric response of interfacial water to applied electric fields. Nature 594, 62–65 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ceriotti, M. et al. Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges. Chem. Rev. 116, 7529–7550 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cassone, G. Nuclear quantum effects largely influence molecular dissociation and proton transfer in liquid water under an electric field. J. Phys. Chem. Lett. 11, 8983–8988 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fernández, D. P., Goodwin, A. R. H., Lemmon, E. W., Levelt Sengers, J. M. H. & Williams, R. C. A formulation for the static permittivity of water and steam at temperatures from 238 k to 873 k at pressures up to 1200 mpa, including derivatives and debye-hückel coefficients. J. Phys. Chem. Ref. Data 26, 1125–1166 (1997).

    Article 
    ADS 

    Google Scholar 

  • Kirkwood, J. G. The dielectric polarization of polar liquids. J. Chem. Phys. 7, 911–919 (1939).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Neumann, M. & Steinhauser, O. On the calculation of the frequency-dependent dielectric constant in computer simulations. Chem. Phys. Lett. 102, 508–513 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • de Leeuw, S. W., Perram, J. W., Smith, E. R. & Rowlinson, J. S. Simulation of electrostatic systems in periodic boundary conditions. i. lattice sums and dielectric constants. Proc. R. Soc. Lond. A 373, 27–56 (1980).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Lu, D., Gygi, Fmc & Galli, G. Dielectric properties of ice and liquid water from first-principles calculations. Phys. Rev. Lett. 100, 147601 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Morawietz, T., Singraber, A., Dellago, C. & Behler, J. How van der waals interactions determine the unique properties of water. Proc. Natl. Acad. Sci. USA 113, 8368–8373 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neumann, M. & Steinhauser, O. Computer simulation and the dielectric constant of polarizable polar systems. Chem. Phys. Lett. 106, 563–569 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bertie, J. E. & Lan, Z. Infrared intensities of liquids xx: The intensity of the oh stretching band of liquid water revisited, and the best current values of the optical constants of h2o(l) at 25c between 15000 and 1 cm−1. Appl. Spectrosc. 50, 1047–1057 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rey, R., Møller, K. B. & Hynes, J. T. Hydrogen bond dynamics in water and ultrafast infrared spectroscopy. J. Phys. Chem. A 106, 11993–11996 (2002).

    Article 
    CAS 

    Google Scholar 

  • Lawrence, C. P. & Skinner, J. L. Vibrational spectroscopy of HOD in liquid D2O. iii. spectral diffusion, and hydrogen-bonding and rotational dynamics. J. Chem. Phys. 118, 264–272 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fecko, C. J., Eaves, J. D., Loparo, J. J., Tokmakoff, A. & Geissler, P. L. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301, 1698–1702 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schienbein, P. & Marx, D. Supercritical water is not hydrogen bonded. Angew. Chem. Int. Ed. 59, 18578–18585 (2020).

    Article 
    CAS 

    Google Scholar 

  • Schienbein, P. & Marx, D. Liquid-vapor phase diagram of rpbe-d3 water: Electronic properties along the coexistence curve and in the supercritical phase. J. Phys. Chem. B 122, 3318–3329 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schienbein, P. & Marx, D. Assessing the properties of supercritical water in terms of structural dynamics and electronic polarization effects. Phys. Chem. Chem. Phys. 22, 10462–10479 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Imoto, S., Forbert, H. & Marx, D. Water structure and solvation of osmolytes at high hydrostatic pressure: pure water and tmao solutions at 10 kbar versus 1 bar. Phys. Chem. Chem. Phys. 17, 24224–24237 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Forster-Tonigold, K. & Groß, A. Dispersion corrected RPBE studies of liquid water. J. Chem. Phys. 141, 064501 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Groß, A. & Sakong, S. Ab initio simulations of water/metal interfaces. Chem. Rev. 122, 10746–10776 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nat. Commun.12, 398 (2021).

  • Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. Accurate fourth-generation machine learning potentials by electrostatic embedding. J. Chem. Theory Comput. 19, 3567–3579 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geiger, M. et al. Euclidean neural networks: e3nn. Preprint at (2022).

  • Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019).

  • Kapil, V. et al. i-pi 2.0: A universal force engine for advanced molecular simulations. Comput. Phys. Commun. 236, 214–223 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Singraber, A., Morawietz, T., Behler, J. & Dellago, C. Parallel multistream training of high-dimensional neural network potentials. J. Chem. Theory Comput. 15, 3075–3092 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ditler, E., Kumar, C. & Luber, S. Analytic calculation and analysis of atomic polar tensors for molecules and materials using the Gaussian and plane waves approach. J. Chem. Phys. 154, 104121 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kühne, T. D. et al. CP2K: An electronic structure and molecular dynamics software package – Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • VandeVondele, J. et al. Quickstep: Fast and accurate density functional calculations using a mixed gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Marques, M. A., Oliveira, M. J. & Burnus, T. Libxc: A library of exchange and correlation functionals for density functional theory. Comput. Phys. Commun. 183, 2272–2281 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Lippert, G., Hutter, J. & Parrinello, M. A hybrid gaussian and plane wave density functional scheme. Mol. Phys. 92, 477–488 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Goedecker, S., Teter, M. & Hutter, J. Separable dual-space gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hartwigsen, C., Goedecker, S. & Hutter, J. Relativistic separable dual-space gaussian pseudopotentials from h to rn. Phys. Rev. B 58, 3641–3662 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Umari, P. & Pasquarello, A. Ab initio molecular dynamics in a finite homogeneous electric field. Phys. Rev. Lett. 89, 157602 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pick, R. M., Cohen, M. H. & Martin, R. M. Microscopic theory of force constants in the adiabatic approximation. Phys. Rev. B 1, 910–920 (1970).

    Article 
    ADS 

    Google Scholar 

  • Nicu, V. P., Neugebauer, J., Wolff, S. K. & Baerends, E. J. A vibrational circular dichroism implementation within a slater-type-orbital based density functional framework and its application to hexa-and hepta-helicenes. Theor. Chem. Acc. 119, 245–263 (2008).

    Article 
    CAS 

    Google Scholar 

  • Unke, O. T. & Meuwly, M. Physnet: A neural network for predicting energies, forces, dipole moments, and partial charges. J. Chem. Theor. Comput. 15, 3678–3693 (2019).

    Article 
    CAS 

    Google Scholar 

  • Unke, O. T. et al. Spookynet: Learning force fields with electronic degrees of freedom and nonlocal effects. Nat. Commun. 12, 7273 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, Z., Han, J., Henkelman, G. & Li, L. Charge-optimized electrostatic interaction atom-centered neural network algorithm. J. Chem. Theor. Comput. 20, 2088–2097 (2024).

  • Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, (2007).

  • Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article 
    ADS 

    Google Scholar 

  • Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

    Article 
    ADS 

    Google Scholar 

  • Joll, K., Schienbein, P., Rosso, K. & Blumberger, J. Machine learning the electric field response of condensed phase systems using perturbed neural network potentials. Source data 1, (2024).

  • Joll, K., Schienbein, P., Rosso, K. & Blumberger, J. Machine learning the electric field response of condensed phase systems using perturbed neural network potentials. Supplementary data 1, (2024).

  • Joll, K., Schienbein, P., Rosso, K. & Blumberger, J. Machine learning the electric field response of condensed phase systems using perturbed neural network potentials. custom APT CP2K, (2024).

  • Joll, K., Schienbein, P., Rosso, K. & Blumberger, J. Machine learning the electric field response of condensed phase systems using perturbed neural network potentials. AtomicPolarTensor, (2024).

  • Zhang, C. & Galli, G. Dipolar correlations in liquid water. J. Chem. Phys. 141, (2014).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *