De Yoreo, J. J. Casting a bright light on Ostwald’s rule of stages. Proc. Natl Acad. Sci. USA 119, e2121661119 (2022).
Google Scholar
Ostwald, W. Studien über die Bildung und umwandlung fester Körper: 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 22U, 289–330 (1897).
Google Scholar
Chung, S.-Y., Kim, Y.-M., Kim, J.-G. & Kim, Y.-J. Multiphase transformation and Ostwald’s rule of stages during crystallization of a metal phosphate. Nat. Phys. 5, 68–73 (2008).
Google Scholar
De Yoreo, J. J. Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 54, 57–93 (2003).
Google Scholar
Schmelzer, J. W. P. & Abyzov, A. S. in Thermal Physics and Thermal Analysis (eds Hubík, Š. J. & Mareš, J. P.) 195–211 (Springer, 2017).
Radha, A. V., Forbes, T. Z., Killian, C. E., Gilbert, P. U. P. A. & Navrotsky, A. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl Acad. Sci. USA 107, 16438–16443 (2010).
Google Scholar
Addadi, L., Raz, S. & Weiner, S. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 15, 959–970 (2003).
Google Scholar
Janicki, T. D., Wan, Z., Liu, R., Evans, P. G. & Schmidt, J. R. Guiding epitaxial crystallization of amorphous solids at the nanoscale: interfaces, stress and precrystalline order. J. Chem. Phys. 157, 100901 (2022).
Google Scholar
Hudson, R. L. Infrared spectra and band strengths of CH3SH, an interstellar molecule. Phys. Chem. Chem. Phys. 18, 25756–25763 (2016).
Google Scholar
Nonaka, T., Ohbayashi, G., Toriumi, Y., Mori, Y. & Hashimoto, H. Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase. Thin Solid Films 370, 258–261 (2000).
Google Scholar
McHenry, M. E., Willard, M. A. & Laughlin, D. E. Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291–433 (1999).
Google Scholar
Holand, W. & Beall, G. H. Glass–Ceramic Technology (Wiley, 2019).
Johnson, D. C. Controlled synthesis of new compounds using modulated elemental reactants. Curr. Opin. Solid State Mater. Sci. 3, 159–167 (1998).
Google Scholar
Cordova, D. L. M. & Johnson, D. C. Synthesis of metastable inorganic solids with extended structures. ChemPhysChem 21, 1345–1368 (2020).
Google Scholar
Evans, P. G., Chen, Y., Tilka, J. A., Babcock, S. E. & Kuech, T. F. Crystallization of amorphous complex oxides: new geometries and new compositions via solid phase epitaxy. Curr. Opin. Solid State Mater. Sci. 22, 229–242 (2018).
Google Scholar
Aykol, M., Montoya, J. H. & Hummelshøj, J. Rational solid-state synthesis routes for inorganic materials. J. Am. Chem. Soc. 143, 9244–9259 (2021).
Google Scholar
Kohlmann, H. Looking into the black box of solid‐state synthesis. Eur. J. Inorg. Chem. 2019, 4174–4180 (2019).
Google Scholar
West, A. R. Solid State Chemistry and Its Applications (Wiley, 2022).
Stoch, L. & Waclawska, I. Phase transformations in amorphous solids. High Temp. Mater. Process. 13, 181–202 (1994).
Google Scholar
Threlfall, T. Structural and thermodynamic explanations of Ostwald’s rule. Org. Process Res. Dev. 7, 1017–1027 (2003).
Google Scholar
Fischer, D., Cancarevic, Z., Schön, J. C. & Jansen, M. Zur Synthese und Struktur von K3N. Z. Anorg. Allg. Chem. 630, 156–160 (2004).
Google Scholar
Deringer, V. L. et al. Origins of structural and electronic transitions in disordered silicon. Nature 589, 59–64 (2021).
Google Scholar
Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).
Google Scholar
Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).
Google Scholar
Aykol, M., Dwaraknath, S. S., Sun, W. & Persson, K. A. Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 4, eaaq0148 (2018).
Google Scholar
Schön, J. C. & Jansen, M. First step towards planning of syntheses in solid-state chemistry: determination of promising structure candidates by global optimization. Angew. Chem. Int. Ed. Engl. 35, 1286–1304 (1996).
Google Scholar
Glass, C. W., Oganov, A. & Hansen, N. USPEX—evolutionary crystal structure prediction. Comput. Phys. Commun. 175, 713–720 (2006).
Google Scholar
Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201 (2011).
Google Scholar
Stevanović, V. Sampling polymorphs of ionic solids using random superlattices. Phys. Rev. Lett. 116, 075503 (2016).
Google Scholar
Pottier, M. J. Mise en évidence d’un composé BiBO3 et de son polymorphisme par spectroscopie vibrationnelle. Bull. Soc. Chim. Belg. 83, 235–238 (1973).
Google Scholar
Becker, P. & Fröhlich, R. Crystal growth and crystal structure of the metastable bismuth orthoborate BiBO3. Z. Naturforsch. B J. Chem. Sci. 59, 256–258 (2004).
Google Scholar
Shinozaki, K., Hashimoto, K., Honma, T. & Komatsu, T. TEM analysis for crystal structure of metastable BiBO3 (II) phase formed in glass by laser-induced crystallization. J. Eur. Ceram. Soc. 35, 2541–2546 (2015).
Google Scholar
Hirotsu, Y. et al. Nanoscale phase separation in metallic glasses studied by advanced electron microscopy techniques. Intermetallics 12, 1081–1088 (2004).
Google Scholar
Aykol, M., Mekhrabov, A. O. & Akdeniz, M. V. Nano-scale phase separation in amorphous Fe–B alloys: atomic and cluster ordering. Acta Mater. 57, 171–181 (2009).
Google Scholar
Huang, J. Y. & Zhu, Y. T. Atomic-scale structural investigations on the nucleation of cubic boron nitride from amorphous boron nitride under high pressures and temperatures. Chem. Mater. 14, 1873–1878 (2002).
Google Scholar
Gladkaya, I. S., Kremkova, G. N. & Slesarev, V. N. Turbostratic boron nitride (BNt) under high pressures and temperatures. J. Less Common Met. 117, 241–245 (1986).
Google Scholar
Sumiya, H., Iseki, T. & Onodera, A. High pressure synthesis of cubic boron nitride from amorphous state. Mater. Res. Bull. 18, 1203–1207 (1983).
Google Scholar
Mangum, J. S. Selective brookite polymorph formation related to the amorphous precursor state in TiO2 thin films. J. Non Cryst. Solids 505, 109–114 (2019).
Google Scholar
Stone, K. H. et al. Influence of amorphous structure on polymorphism in vanadia. APL Mater. 4, 076103 (2016).
Google Scholar
Agirseven, O. et al. Crystallization of TiO2 polymorphs from RF-sputtered, amorphous thin-film precursors. AIP Adv. 10, 025109 (2020).
Google Scholar
Hannemann, A., Schön, J. C., Jansen, M., Putz, H. & Lengauer, T. Modeling amorphous Si3B3N7: structure and elastic properties. Phys. Rev. B 70, 144201 (2004).
Google Scholar
Neelamraju, S., Schön, J. C. & Jansen, M. Atomistic modeling of the low-temperature atom-beam deposition of magnesium fluoride. Inorg. Chem. 54, 782–791 (2014).
Google Scholar
Mu, X. et al. Evolution of order in amorphous-to-crystalline phase transformation of MgF2. J. Appl. Crystallogr. 46, 1105–1116 (2013).
Google Scholar
Sosso, G. C. et al. Fast crystallization of the phase change compound GeTe by large-scale molecular dynamics simulations. J. Phys. Chem. Lett. 4, 4241–4246 (2013).
Google Scholar
Cui, X.-Y., Ringer, S. P., Wang, G. & Stachurski, Z. H. What should the density of amorphous solids be? J. Chem. Phys. 151, 194506 (2019).
Google Scholar
Lindemann, F. A. The calculation of molecular vibration frequencies. Z. Phys. 11, 609 (1910).
Schoenholz, S. S. & Cubuk, E. D. JAX, M.D.: a framework for differentiable physics. J. Stat. Mech. 2021, 124016 (2021).
Google Scholar
Aykol, M., Wei, J. N., Batzner, S., Merchant, A. & Cubuk, E. D. Predicting properties of amorphous solids with graph network potentials. In Proc. 1st Workshop on the Synergy of Scientific and Machine Learning Modeling (ICML, 2023).
Bitzek, E., Koskinen, P., Gähler, F., Moseler, M. & Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).
Google Scholar
Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).
Google Scholar
Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
Google Scholar
Deringer, V. L., Caro, M. A. & Csányi, G. Machine learning interatomic potentials as emerging tools for materials science. Adv. Mater. 31, e1902765 (2019).
Google Scholar
Artrith, N. & Urban, A. An implementation of artificial neural-network potentials for atomistic materials simulations: performance for TiO2. Comput. Mater. Sci. 114, 135–150 (2016).
Google Scholar
Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).
Google Scholar
Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13, 2453 (2022).
Google Scholar
Riebesell, J. et al. MatBench Discovery—a framework to evaluate machine learning crystal stability prediction. Preprint at (2023).
Putz, H., Schön, J. C. & Jansen, M. Strukturvorhersage von Kristallen aus binären Edelgasgemischen mit globalen und lokalen Optimierungsmethoden. Ber. Bunsenges. Phys. Chem. 99, 1148–1153 (1995).
Google Scholar
Freeman, C. M., Newsam, J. M., Levine, S. M. & Catlow, C. R. A. Inorganic crystal structure prediction using simplified potentials and experimental unit cells: application to the polymorphs of titanium dioxide. J. Mater. Chem. 3, 531–535 (1993).
Google Scholar
Reinhardt, A., Pickard, C. J. & Cheng, B. Predicting the phase diagram of titanium dioxide with random search and pattern recognition. Phys. Chem. Chem. Phys. 22, 12697–12705 (2020).
Google Scholar
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Google Scholar
a2c supplementary data. Zenodo (2024).
JAX, M.D. Zenodo (2024).
link