Lampel, A. Biology-inspired supramolecular peptide systems. Chem 6, 1222–1236 (2020).
Google Scholar
Janković, P., Šantek, I., Pina, A. S. & Kalafatovic, D. Exploiting peptide self-assembly for the development of minimalistic viral mimetics. Front. Chem. 9, 723473 (2021).
Google Scholar
Frederix, P. W. et al. Exploring the sequence space for (tri-) peptide self-assembly to design and discover new hydrogels. Nat. Chem. 7, 30–37 (2015).
Google Scholar
Lampel, A., Ulijn, R. & Tuttle, T. Guiding principles for peptide nanotechnology through directed discovery. Chem. Soc. Rev. 47, 3737–3758 (2018).
Google Scholar
Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).
Google Scholar
Chatterjee, A., Reja, A., Pal, S. & Das, D. Systems chemistry of peptide-assemblies for biochemical transformations. Chem. Soc. Rev. 51, 3047–3070 (2022).
Ramakrishnan, M., van Teijlingen, A., Tuttle, T. & Ulijn, R. V. Integrating computation, experiment, and machine learning in the design of peptide-based supramolecular materials and systems. Angew. Chem. Int. Ed. 62, e202218067 (2023).
Lampel, A. et al. Polymeric peptide pigments with sequence-encoded properties. Science 356, 1064–1068 (2017).
Google Scholar
Smith, D. J. et al. A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels. Nat. Nanotechnol. 11, 95–102 (2016).
Google Scholar
Batra, R. et al. Machine learning overcomes human bias in the discovery of self-assembling peptides. Nat. Chem. 14, 1427–1435 (2022).
Pierce, N. A. & Winfree, E. Protein design is NP-hard. Protein Eng. 15, 779–782 (2002).
Google Scholar
Hu, K. et al. Self-assembly of constrained cyclic peptides controlled by ring size. CCS Chem. 2, 42–51 (2020).
Google Scholar
Hu, K. et al. Tuning peptide self-assembly by an in-tether chiral center. Sci. Adv. 4, 5907 (2018).
Google Scholar
Chan, K. H., Lee, W. H., Ni, M., Loo, Y. & Hauser, C. A. C-terminal residue of ultrashort peptides impacts on molecular self-assembly, hydrogelation, and interaction with small-molecule drugs. Sci. Rep. 8, 17127 (2018).
Google Scholar
Kim, J. et al. Role of water in directing diphenylalanine assembly into nanotubes and nanowires. Adv. Mater. 22, 583–587 (2010).
Google Scholar
Nguyen, P. K. et al. Self-assembly of a dentinogenic peptide hydrogel. ACS Omega 3, 5980–5987 (2018).
Google Scholar
Yan, X. et al. Reversible transitions between peptide nanotubes and vesicle-like structures including theoretical modeling studies. Chem. A Eur. J. 14, 5974–5980 (2008).
Google Scholar
Yang, K. K., Wu, Z. & Arnold, F. H. Machine-learning-guided directed evolution for protein engineering. Nat. Methods 16, 687–694 (2019).
Google Scholar
Mandal, D., Shirazi, A. N. & Parang, K. Self-assembly of peptides to nanostructures. Org. Biomol. Chem. 12, 3544–3561 (2014).
Google Scholar
Shmilovich, K. et al. Discovery of self-assembling π-conjugated peptides by active learning-directed coarse-grained molecular simulation. J. Phys. Chem. B 124, 3873–3891 (2020).
Google Scholar
Gocheva, G., Peneva, K. & Ivanova, A. Self-assembly of doxorubicin and a drug-binding peptide studied by molecular dynamics. Chem. Phys. 525, 110380 (2019).
Google Scholar
Guo, C., Luo, Y., Zhou, R. & Wei, G. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides. Nanoscale 6, 2800–2811 (2014).
Google Scholar
Lee, O.-S., Cho, V. & Schatz, G. C. Modeling the self-assembly of peptide amphiphiles into fibers using coarse-grained molecular dynamics. Nano Lett. 12, 4907–4913 (2012).
Google Scholar
Hauser, C. A. et al. Natural tri-to hexapeptides self-assemble in water to amyloid β-type fiber aggregates by unexpected α-helical intermediate structures. Proc. Natl Acad. Sci. USA 108, 1361–1366 (2011).
Google Scholar
Frederix, P. W., Patmanidis, I. & Marrink, S. J. Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection to experiments. Chem. Soc. Rev. 47, 3470–3489 (2018).
Google Scholar
Takahashi, K., Oda, T. & Naruse, K. Coarse-grained molecular dynamics simulations of biomolecules. AIMS Biophys. 1, 1–15 (2014).
Google Scholar
Frederix, P. W., Ulijn, R. V., Hunt, N. T. & Tuttle, T. Virtual screening for dipeptide aggregation: toward predictive tools for peptide self-assembly. J. Phys. Chem. Lett. 2, 2380–2384 (2011).
Google Scholar
Zhou, P., Yuan, C. & Yan, X. Computational approaches for understanding and predicting the self-assembled peptide hydrogels. Curr. Opin. Colloid Interface Sci. 62, 101645 (2022).
Palmer, N., Maasch, J. R., Torres, M. D. & de la Fuente-Nunez, C. Molecular dynamics for antimicrobial peptide discovery. Infect. Immun. 89, 00703-20 (2021).
Google Scholar
Wan, F., Wong, F., Collins, J. J. & de la Fuente-Nunez, C. Machine learning for antimicrobial peptide identification and design. Nat. Rev. Bioeng. 2, 392–407 (2024).
Das, P. et al. Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nat. Biomed. Eng. 5, 613–623 (2021).
Yoshida, M. et al. Using evolutionary algorithms and machine learning to explore sequence space for the discovery of antimicrobial peptides. Chem 4, 533–543 (2018).
Google Scholar
Zeng, W.-F. et al. AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics. Nat. Commun. 13, 7238 (2022).
Google Scholar
Bukhari, S. N. H., Webber, J. & Mehbodniya, A. Decision tree based ensemble machine learning model for the prediction of Zika virus T-cell epitopes as potential vaccine candidates. Sci. Rep. 12, 7810 (2022).
Google Scholar
Melo, M. C., Maasch, J. R. & de la Fuente-Nunez, C. Accelerating antibiotic discovery through artificial intelligence. Commun. Biol. 4, 1050 (2021).
Google Scholar
Chen, J., Cheong, H. H. & Siu, S. W. XDeep-AcPEP: deep learning method for anticancer peptide activity prediction based on convolutional neural network and multitask learning. J. Chem. Inf. Model. 61, 3789–3803 (2021).
Google Scholar
Akbar, S. et al. iAtbP-Hyb-EnC: prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning model. Comput. Biol. Med. 137, 104778 (2021).
Google Scholar
Aronica, P. G. et al. Computational methods and tools in antimicrobial peptide research. J. Chem. Inf. Model. 61, 3172–3196 (2021).
Google Scholar
Hasan, M. M. et al. HLPpred-Fuse: improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation. Bioinformatics 36, 3350–3356 (2020).
Google Scholar
Manavalan, B., Shin, T. H., Kim, M. O. & Lee, G. AIPpred: sequence-based prediction of anti-inflammatory peptides using random forest. Front. Pharmacol. 9, 276 (2018).
Google Scholar
Oeller, M. et al. Sequence-based prediction of the intrinsic solubility of peptides containing non-natural amino acids. Nat. Commun. 14, 7475 (2023).
Google Scholar
Liu, Y. et al. A survey on evolutionary neural architecture search. IEEE Trans. Neural Netw. Learn. Syst. 34, 550–570, (2023).
Elsken, T., Metzen, J. H. & Hutter, F. Neural architecture search: a survey. J. Mach. Learn. Res. 20, 1997–2017 (2019).
Google Scholar
Li, F. et al. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features. Proc. Natl Acad. Sci. USA 116, 11259–11264 (2019).
Google Scholar
Xu, T. et al. Accelerating the prediction and discovery of peptide hydrogels with human-in-the-loop. Nat. Commun. 14, 3880 (2023).
Google Scholar
van Teijlingen, A. & Tuttle, T. Beyond tripeptides two-step active machine learning for very large data sets. J. Chem. Theory Comput. 17, 3221–3232 (2021).
Google Scholar
Gromski, P. S., Henson, A. B., Granda, J. M. & Cronin, L. How to explore chemical space using algorithms and automation. Nat. Rev. Chem. 3, 119–128 (2019).
Google Scholar
Attique, M., Farooq, M. S., Khelifi, A. & Abid, A. Prediction of therapeutic peptides using machine learning: Computational models, datasets, and feature encodings. IEEE Access 8, 148570–148594 (2020).
Google Scholar
Scott, G. G., Börner, T., Leser, M. E., Wooster, T. J. & Tuttle, T. Directed discovery of tetrapeptide emulsifiers. Front. Chem. 10, 822868 (2022).
Heydari, S., Raniolo, S., Livi, L. & Limongelli, V. Transferring chemical and energetic knowledge between molecular systems with machine learning. Commun. Chem. 6, 13 (2023).
Google Scholar
Kaygisiz, K. et al. Inverse design of viral infectivity-enhancing peptide fibrils from continuous protein-vector embeddings. Biomater. Sci. 11, 5251–5261 (2023).
Deo, D. R. et al. Brain control of bimanual movement enabled by recurrent neural networks. Sci. Rep. 14, 1598 (2024).
Google Scholar
Singh, S. H., van Breugel, F., Rao, R. P. & Brunton, B. W. Emergent behaviour and neural dynamics in artificial agents tracking odour plumes. Nat. Mach. Intell. 5, 58–70 (2023).
Google Scholar
Hong, T. & Stauffer, W. R. Computational complexity drives sustained deliberation. Nat. Neurosci. 26, 850–857 (2023).
Bengio, Y., Simard, P. & Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166 (1994).
Google Scholar
Yang, G., Jiayu, Y., Dongdong, X., Zelin, G. & Hai, H. Feature-enhanced text-inception model for Chinese long text classification. Sci. Rep. 13, 2087 (2023).
Google Scholar
Zhang, L., Wang, S. & Liu, B. Deep learning for sentiment analysis: a survey. WIREs Data Mining Knowl. Discov. 8, e1253 (2018).
Google Scholar
Zhang, X. et al. Deeptap: an RNN-based method of TAP-binding peptide prediction in the selection of tumor neoantigens. Comput. Biol. Med. 164, 107247 (2023).
Google Scholar
Zhou, Z., Qiu, C. & Zhang, Y. A comparative analysis of linear regression, neural networks and random forest regression for predicting air ozone employing soft sensor models. Sci. Rep. 13, 22420 (2023).
Google Scholar
De Groot, N., Pallarès, I., Avilés, F., Vendrell, J. & Ventura, S. Prediction of ‘hot spots’ of aggregation in disease-linked polypeptides. BMC Struct. Biol. 5, 18 (2005).
Google Scholar
Siri Team. Hey Siri: An on-device DNN-powered voice trigger for Apple’s personal assistant. Machine Learning Research at Apple (2017).
Le, Q. V. & Schuster, M. A neural network for machine translation, at production scale. Google AI Blog 27 (2016).
Su, T., Sun, L., Wang, Q.-F. & Wang, D.-H. in Deep Learning: Fundamentals, Theory and Applications 31–55 (Springer, 2019).
Guo, C. et al. Expanding the nanoarchitectural diversity through aromatic di- and tri-peptide coassembly: nanostructures and molecular mechanisms. ACS Nano 10, 8316–8324 (2016).
Google Scholar
Reches, M. & Gazit, E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett. 4, 581–585 (2004).
Google Scholar
Conchillo-Solé, O. et al. AGGRESCAN: a server for the prediction of ‘hot spots’ of aggregation in polypeptides. BMC Bioinform. 8, 65 (2007).
Google Scholar
Lee, S. et al. Self-assembling peptides and their application in the treatment of diseases. Int. J. Mol. Sci. 20, 5850 (2019).
Lopez-Silva, T. L. & Schneider, J. P. From structure to application: progress and opportunities in peptide materials development. Curr. Opin. Chem. Biol. 64, 131–144 (2021).
Google Scholar
Otović, E., Njirjak, M., Kalafatovic, D. & Mauša, G. Sequential properties representation scheme for recurrent neural network-based prediction of therapeutic peptides. J. Chem. Inf. Model. 62, 2961–2972 (2022).
Google Scholar
Singh, D. & Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 97, 105524 (2020).
Google Scholar
Nawi, N. M., Atomi, W. H. & Rehman, M. Z. The effect of data pre-processing on optimized training of artificial neural networks. Proc. Technol. 11, 32–39 (2013).
Google Scholar
Pascanu, R., Mikolov, T. & Bengio, Y. On the difficulty of training recurrent neural networks. In Proc. 30th International Conference on Machine Learning 1310–1318 (PMLR, 2013).
Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Wei, L., Ye, X., Sakurai, T., Mu, Z. & Wei, L. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning. Bioinformatics 38, 1514–1524 (2022).
Google Scholar
Dean, S. N., Alvarez, J. A. E., Zabetakis, D., Walper, S. A. & Malanoski, A. P. PepVAE: variational autoencoder framework for antimicrobial peptide generation and activity prediction. Front. Microbiol. 12, 725727 (2021).
Google Scholar
Negovetić, M., Otović, E., Kalafatovic, D. & Mauša, G. Efficiently solving the curse of feature-space dimensionality for improved peptide classification. Digital Discov. 3, 1182–1193 (2024).
Capecchi, A. et al. Machine learning designs non-hemolytic antimicrobial peptides. Chem. Sci. 12, 9221–9232 (2021).
Google Scholar
Elman, J. L. Finding structure in time. Cogn. Sci. 14, 179–211 (1990).
Google Scholar
Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
Google Scholar
Schuster, M. & Paliwal, K. K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45, 2673–2681 (1997).
Google Scholar
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Google Scholar
Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 5999–6010 (2017).
Liu, Z. et al. Efficient prediction of peptide self-assembly through sequential and graphical encoding. Brief. Bioinfor. 24, 409 (2023).
Google Scholar
Mauša, G., Njirjak, M., Otović, E. & Kalafatovic, D. Configurable soft computing-based generative model: the search for catalytic peptides. MRS Adv. 8, 1068–1074 (2023).
Needleman, S. B. & Wunsch, C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970).
Google Scholar
Thapa, S., Clark, F., Schneebeli, S. & Li, J. Multiscale simulations to discover self-assembled oligopeptides: a benchmarking study. J. Chem. Theory Comput. 20, 375–384 (2023).
Biancalana, M., Makabe, K., Koide, A. & Koide, S. Molecular mechanism of Thioflavin-T binding to the surface of β-rich peptide self-assemblies. J. Mol. Biol. 385, 1052–1063 (2009).
Google Scholar
Li, T., Lu, X.-M., Zhang, M.-R., Hu, K. & Li, Z. Peptide-based nanomaterials: self-assembly, properties and applications. Bioact. Mater. 11, 268–282 (2022).
Ghosh, G. et al. Control over multiple nano-and secondary structures in peptide self-assembly. Angew. Chem. Int. Ed. 61, 202113403 (2022).
Google Scholar
Hu, X. et al. Recent advances in short peptide self-assembly: from rational design to novel applications. Curr. Opin. Colloid Interface Sci. 45, 1–13 (2020).
Google Scholar
Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning 448–456 (PMLR, 2015).
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).
Google Scholar
de Jong, D. H. et al. Improved parameters for the martini coarse-grained protein force field. J. Chem. Theory Comput. 9, 687–697 (2013).
Google Scholar
Yesylevskyy, S. O., Schäfer, L. V., Sengupta, D. & Marrink, S. J. Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput. Biol. 6, e1000810 (2010).
Google Scholar
Hünenberger, P. H. in Thermostat Algorithms for Molecular Dynamics Simulations (eds Holm, C. & Kremer, K.) 105–149 (Springer, 2005).
Eisenhaber, F., Lijnzaad, P., Argos, P., Sander, C. & Scharf, M. The double cubic lattice method: efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J. Comput. Chem. 16, 273–284 (1995).
Google Scholar
Sievers, F. & Higgins, D. G. Clustal omega. Curr. Protoc. Bioinform. 48, 1.25.1–1.25.33 (2014).
Google Scholar
Madeira, F. et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 50, 276–279 (2022).
Google Scholar
Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).
Google Scholar
Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).
Google Scholar
Njirjak, M. et al. ML peptide self-assembly. Zenodo (2024).
link