Teaching robots to build simulations of themselves

Teaching robots to build simulations of themselves

  • Afzal, A., Katz, D. S., Le Goues, C. & Timperley, C. S. Proc. 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST) (IEEE, 2021).

  • Choi, H. et al. On the use of simulation in robotics: ppportunities, challenges, and suggestions for moving forward. Proc. Natl Acad. Sci. USA 118, e1907856118 (2021).

    Article 

    Google Scholar 

  • Liu, C. K. & Negrut, D. The role of physics-based simulators in robotics. Annu. Rev. Control Robot. Auton. Syst. 4, 35–58 (2021).

    Article 
    MATH 

    Google Scholar 

  • Žlajpah, L. Simulation in robotics. Math. Comput. Simul. 79, 879–897 (2008).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Howard, D. et al. Evolving embodied intelligence from materials to machines. Nat. Mach. Intell. 1, 12–19 (2019).

    Article 
    MATH 

    Google Scholar 

  • Gallup, G. G. Self recognition in primates: a comparative approach to the bidirectional properties of consciousness. Am. Psychol. 32, 329–338 (1977).

    Article 
    MATH 

    Google Scholar 

  • Gallup, G. G. Jr Self-awareness and the emergence of mind in primates. Am. J. Primatol. 2, 237–248 (1982).

    Article 
    MATH 

    Google Scholar 

  • Cash, T. F. Body Image (Oxford Univ. Press, 2000).

  • Chiel, H. J. & Beer, R. D. The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci. 20, 553–557 (1997).

    Article 
    MATH 

    Google Scholar 

  • Agnew, W. et al. Amodal 3D reconstruction for robotic manipulation via stability and connectivity. In Proc. 2020 Conference on Robot Learning (eds Kober, J. et al.) 1498–1508 (2021).

  • Huang, W. et al. VoxPoser: composable 3D value maps for robotic manipulation with language models. In Proc. 7th Conference on Robot Learning (eds Tan, J. et al.) 540–562 (PMLR, 2023).

  • Papachristos, C., Khattak, S., Mascarich, F., Dang, T. & Alexis, K. Proc. 2019 International Conference on Unmanned Aircraft Systems (ICUAS) (IEEE, 2019).

  • Xu, Z., He, Z., Wu, J. & Song, S. Learning 3D dynamic scene representations for robot manipulation. In Proc. 2020 Conference on Robot Learning (eds Kober, J. et al.) 126–142 (PMLR, 2021).

  • Steels, L. & Spranger, M. The robot in the mirror. Connect. Sci. 20, 337–358 (2008).

    Article 
    MATH 

    Google Scholar 

  • Kwiatkowski, R. & Lipson, H. Task-agnostic self-modeling machines. Sci. Robot. 4, eaau9354 (2019).

    Article 
    MATH 

    Google Scholar 

  • Kwiatkowski, R., Hu, Y., Chen, B. & Lipson, H. On the origins of self-modeling. Preprint at (2022).

  • Vaughan, R. & Zuluaga, M. Use your illusion: sensorimotor self-simulation allows complex agents to plan with incomplete self-knowledge. In Proc. 9th International Conference on from Animals to Animats: Simulation of Adaptive Behavior (eds Nolfi, S. et al.) 298–309 (Springer, 2006).

  • Wittmeier, S. et al. Toward anthropomimetic robotics: development, simulation, and control of a musculoskeletal torso. Artif. Life 19, 171–193 (2013).

    Article 

    Google Scholar 

  • Blum, C., Winfield, A. F. T. & Hafner, V. V. Simulation-based internal models for safer robots. Front. Robot. AI (2018).

  • Chen, B., Kwiatkowski, R., Vondrick, C. & Lipson, H. Fully body visual self-modeling of robot morphologies. Sci. Robot. 7, eabn1944 (2022).

    Article 

    Google Scholar 

  • Barron, J. T. et al. Proc. 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (IEEE, 2021).

  • Pumarola, A., Corona, E., Pons-Moll, G. & Moreno-Noguer, F. Proc. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2021).

  • Reiser, C., Peng, S., Liao, Y. & Geiger, A. Proc. IEEE/CVF International Conference on Computer Vision (ICCV) (IEEE, 2021).

  • Mildenhall, B. et al. NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65, 99–106 (2021).

  • Hu, B., Huang, J., Liu, Y., Tai, Y.-W. & Tang, C.-K. Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2023).

  • Lazova, V., Guzov, V., Olszewski, K., Tulyakov, S. & Pons-Moll, G. Proc. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (IEEE, 2023).

  • Xu, C. et al. Proc. IEEE/CVF International Conference on Computer Vision (ICCV) (IEEE, 2023).

  • Zhong, E. D., Bepler, T., Davis, J. H. & Berger, B. Proc. 8th International Conference on Learning Representations (ICLR, 2020).

  • Xu, J. et al. Proc. 2023 IEEE/CVF International Conference on Computer Vision (ICCV) (IEEE, 2023).

  • Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at (2014).

  • LaValle, S. M. & Kuffner, J. J. in Algorithmic and Computational Robotics (ed. Rus, D.) 303–307 (A K Peters/CRC Press, 2001).

  • Bongard, J., Zykov, V. & Lipson, H. Resilient machines through continuous self-modeling. Science 314, 1118–1121 (2006).

    Article 
    MATH 

    Google Scholar 

  • Kucuk, S. & Bingul, Z. Robot Linematics: Forward and Inverse Kinematics (INTECH Open Access Publisher, 2006).

  • Coumans, E. ACM SIGGRAPH 2015 Courses (Association for Computing Machinery, 2015).

  • Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems (eds Wallach, H. et al.) 8024–8035 (Curran Associates, Inc., 2019).

  • Agarap, A. F. Deep learning using rectified linear units (ReLU). Preprint at (2018).

  • Tancik, M. et al. Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural Inf. Process. Syst. 33, 7537–7547 (2020).

    MATH 

    Google Scholar 

  • Buda, M., Maki, A. & Mazurowski, M. A. A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018).

    Article 
    MATH 

    Google Scholar 

  • Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Proc. 2017 IEEE International Conference on Computer Vision (ICCV) (IEEE, 2017).

  • Hu, Y. & Lin, J. Teaching robots to build simulations of themselves. Zenodo (2024).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *