Randall, D. & Welser, C. The Irreproducibility Crisis of Modern Science: Causes, Consequences, and the Road to Reform (National Association of Scholars, 2018).
Ritchie, S. Science fictions: How Fraud, Bias, Negligence, and Hype Undermine the Search for Truth (Vintage, 2020).
Munafò, M. R. et al. A manifesto for reproducible science. Nat. Human Behav. 1, 1–9 (2017).
Google Scholar
Ioannidis, J. P. A. Why most published research findings are false. PLoS Med. 2, e124 (2005).
Google Scholar
Open Science Collaboration. Estimating the reproducibility of psychological science. Science 349, aac4716 (2015).
Google Scholar
Prinz, F., Schlange, T. & Asadullah, K. Believe it or not: how much can we rely on published data on potential drug targets? Nat. Rev. Drug Discov. 10, 712 (2011).
Google Scholar
Begley, C. G. & Ellis, L. M. Raise standards for preclinical cancer research. Nature 483, 531–533 (2012).
Google Scholar
Gelman, A. & Loken, E. The Garden of Forking Paths: Why Multiple Comparisons Can be a Problem, Even When There is no ‘Fishing Expedition’ or ‘p-Hacking’ and the Research Hypothesis was Posited Ahead of Time Vol. 348, 1–17 (Department of Statistics, 2013).
Baker, M. Reproducibility crisis. Nature 533, 353–66 (2016).
Karagiorgi, G., Kasieczka, G., Kravitz, S., Nachman, B. & Shih, D. Machine learning in the search for new fundamental physics. Nat. Rev. Phys. 4, 399–412 (2022).
Google Scholar
Dara, S., Dhamercherla, S., Jadav, S. S., Babu, C. H. M. & Ahsan, M. J. Machine learning in drug discovery: a review. Artif. Intell. Rev. 55, 1947–1999 (2022).
Google Scholar
Mater, A. C. & Coote, M. L. Deep learning in chemistry. J. Chem. Inform. Model. 59, 2545–2559 (2019).
Google Scholar
Carleo, G. et al. Machine learning and the physical sciences. Rev. Modern Phys. 91, 045002 (2019).
Google Scholar
Rajkomar, A., Dean, J. & Kohane, I. Machine learning in medicine. New England J. Med. 380, 1347–1358 (2019).
Google Scholar
Grimmer, J., Roberts, M. E. & Stewart, B. M. Machine learning for social science: an agnostic approach. Ann. Rev. Pol. Sci. 24, 395–419 (2021).
Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).
Google Scholar
Hutson, M. Artificial intelligence faces reproducibility crisis. Science 359, 725–726 (2018).
Google Scholar
Gundersen, O.E., Coakley, K., Kirkpatrick, C. & Gil, Y. Sources of irreproducibility in machine learning: a review. Preprint at (2022).
Sculley, D., Snoek, J., Wiltschko, A. & Rahimi, A. Winner’s Curse? On Pace, Progress, and Empirical Rigor (ICLR, 2018).
Armstrong, T. G., Moffat, A., Webber, W. & Zobel, J. Improvements that don’t add up: ad-hoc retrieval results since 1998. In Proc. 18th ACM Conference on Information and Knowledge Management 601–610 (ACM, 2009).
Kapoor, S. & Narayanan, A. Leakage and the reproducibility crisis in machine-learning-based science. Patterns, 4, 100804 (2023).
Kapoor, S. et al. Reforms: reporting standards for machine learning based science. Preprint at (2023).
DeMasi, O., Kording, K. & Recht, B. Meaningless comparisons lead to false optimism in medical machine learning. PloS ONE 12, e0184604 (2017).
Google Scholar
Roberts, M. et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3, 199–217 (2021).
Google Scholar
Wynants, L. et al. Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal. BMJ 369, m1328 (2020).
Whalen, S., Schreiber, J., Noble, W. S. & Pollard, K. S. Navigating the pitfalls of applying machine learning in genomics. Nat. Rev. Genet. 23, 169–181 (2022).
Google Scholar
Artrith, N. et al. Best practices in machine learning for chemistry. Nat. Chem. 13, 505–508 (2021).
Google Scholar
Thuerey, N. et al. Physics-based deep learning. Preprint at (2021).
Brunton, S. L. & Kutz, J. N. Promising directions of machine learning for partial differential equations. Nat. Comput. Sci. 4, 483–494 (2024).
Vinuesa, R. & Brunton, S. L. Enhancing computational fluid dynamics with machine learning. Nat. Comput. Sci. 2, 358–366 (2022).
Google Scholar
Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).
Google Scholar
Cuomo, S. et al. Scientific machine learning through physics–informed neural networks: where we are and what’s next. J. Sci. Comput. 92, 88 (2022).
Google Scholar
Duraisamy, K., Iaccarino, G. & Xiao, H. Turbulence modeling in the age of data. Ann. Rev. Fluid Mech. 51, 357–377 (2019).
Google Scholar
Durran, D. R. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics Vol. 32 (Springer, 2013).
LeVeque, R. J. Numerical Methods for Conservation Laws Vol. 214 (Birkhäuser, 1992).
Mishra, S. A machine learning framework for data driven acceleration of computations of differential equations. Math. Eng. (2018).
Kochkov, D. et al. Machine learning–accelerated computational fluid dynamics. Proc. Natl Acad. Sci. USA 118, e2101784118 (2021).
Google Scholar
Kadapa, C. Machine learning for computational science and engineering—a brief introduction and some critical questions. Preprint at (2021).
Ross, A., Li, Z., Perezhogin, P., Fernandez-Granda, C. & Zanna, L. Benchmarking of machine learning ocean subgrid parameterizations in an idealized model. J. Adv. Model. Earth Syst. 15, e2022MS003258 (2023).
Google Scholar
Lippe, P., Veeling, B., Perdikaris, P., Turner, R. & Brandstetter, J. PDE-refiner: achieving accurate long rollouts with neural PDE solvers. In 37th Conference on Neural Information Processing Systems (NeurIPS 2023).
Vlachas, P. R. et al. Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics. Neural Netw. 126, 191–217 (2020).
Google Scholar
Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).
Google Scholar
Grossmann, T. G., Komorowska, U. J., Latz, J. & Schönlieb, C.-B. Can physics-informed neural networks beat the finite element method? IMA J. Appl. Math. 89, 143–174, (2024).
de la Mata, F. F., Gijón, A., Molina-Solana, M. & Gómez-Romero, J. Physics-informed neural networks for data-driven simulation: advantages, limitations, and opportunities. Phys. A 610, 128415 (2023).
Google Scholar
Chuang, P.-Y. & Barba, L. A. Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration. Preprint at (2022).
Chuang, P.-Y. & Barba, L. A. Predictive limitations of physics-informed neural networks in vortex shedding. Preprint at (2023).
Wang, S., Yu, X. & Perdikaris, P. When and why pinns fail to train: a neural tangent kernel perspective. J. Comput. Phys. 449, 110768 (2022).
Google Scholar
Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R. & Mahoney, M. W. Characterizing possible failure modes in physics-informed neural networks. In 35th Conference on Neural Information Processing Systems Vol. 34, 26548–26560 (NeurIPS 2021).
Basir, S. & Senocak, I. Critical investigation of failure modes in physics-informed neural networks. In AiAA SCITECH 2022 Forum 2353 (ARC, 2022).
Karnakov, P., Litvinov, S. & Koumoutsakos, P. Solving inverse problems in physics by optimizing a discrete loss: fast and accurate learning without neural networks. Proc. Natl Acad. Sci. Nexus 3, pgae005 (2024).
Gundersen, O. E. The fundamental principles of reproducibility. Phil. Trans. R. Soc. A 379, 20200210 (2021).
Google Scholar
Aromataris, E. & Pearson, A. The systematic review: an overview. Am. J. Nursing 114, 53–58 (2014).
Google Scholar
Magiera, J., Ray, D., Hesthaven, J. S. & Rohde, C. Constraint-aware neural networks for riemann problems. J. Comput. Phys. 409, 109345 (2020).
Google Scholar
Bezgin, D. A., Schmidt, S. J. & Adams, N. A. A data-driven physics-informed finite-volume scheme for nonclassical undercompressive shocks. J. Comput. Phys. 437, 110324 (2021).
Google Scholar
Dresdner, G. et al. Learning to correct spectral methods for simulating turbulent flows. Transact. Mach. Learn Res. (2023).
Toshev, A. P., Galletti, G., Brandstetter, J., Adami, S. & Adams, N. A. E(3) equivariant graph neural networks for particle-based fluid mechanics. In ICLR 2023 Workshop on Physics for Machine Learning (2023).
Discacciati, N., Hesthaven, J. S. & Ray, D. Controlling oscillations in high-order discontinuous galerkin schemes using artificial viscosity tuned by neural networks. J. Comput. Phys. 409, 109304 (2020).
Google Scholar
Dong, S. & Yang, J. On computing the hyperparameter of extreme learning machines: algorithm and application to computational pdes, and comparison with classical and high-order finite elements. J. Comput. Phys. 463, 111290 (2022).
Google Scholar
Bar-Sinai, Y., Hoyer, S., Hickey, J. & Brenner, M. P. Learning data-driven discretizations for partial differential equations. Proc. Natl Acad. Sci. USA 116, 15344–15349 (2019).
Google Scholar
Li, Z. et al. Fourier neural operator for parametric partial differential equations. In Proc. of ICLR 2021 (2021).
Li, Z. et al. Physics-informed neural operator for learning partial differential equations. ACM/JMS J. Data Sci. (2024).
Richards, G. C. & Onakpoya, I. J. in Catalogue of Bias (Catalogue of Bias, 2019); https://catalogofbias.org/biases/reporting-biases/
Thornton, A. & Lee, P. Publication bias in meta-analysis: its causes and consequences. J. Clin. Epidemiol. 53, 207–216 (2000).
Google Scholar
Boutron, I. & Ravaud, P. Misrepresentation and distortion of research in biomedical literature. Proc. Natl Acad. Sci. USA 115, 2613–2619 (2018).
Google Scholar
Thomas, E. T. & Heneghan, C. Catalogue of bias: selective outcome reporting bias. BMJ Evid.-Based Med. 27, 370–372 (2022).
Google Scholar
Head, M. L., Holman, L., Lanfear, R., Kahn, A. T. & Jennions, M. D. The extent and consequences of p-hacking in science. PLoS Biol. 13, e1002106 (2015).
Google Scholar
Saini, P. et al. Selective reporting bias of harm outcomes within studies: findings from a cohort of systematic reviews. BMJ 349, g6501 (2014).
Altman, D. G., Moher, D. & Schulz, K. F. Harms of outcome switching in reports of randomised trials: consort perspective. BMJ 356, j396 (2017).
Erasmus, A., Holman, B. & Ioannidis, J. P. A. Data-dredging bias. BMJ Evid.-Based Med. 27, 209–211 (2022).
Google Scholar
De Vries, Y. A. et al. The cumulative effect of reporting and citation biases on the apparent efficacy of treatments: the case of depression. Psychol. Med. 48, 2453–2455 (2018).
Google Scholar
Fanelli, D. ‘Positive’ results increase down the hierarchy of the sciences. PloS ONE 5, e10068 (2010).
Google Scholar
Wang, S., Wang, H. & Perdikaris, P. Learning the solution operator of parametric partial differential equations with physics-informed deeponets. Sci. Adv. 7, eabi8605 (2021).
Google Scholar
Um, K., Brand, R., Fei, Y. R., Holl, P. & Thuerey, N. Solver-in-the-loop: learning from differentiable physics to interact with iterative PDE-solvers. In 34th Conference on Neural Information Processing Systems 33, 6111–6122 (NeurIPS, 2020).
Brandstetter, J., Worrall, D. & Welling, M. Message passing neural PDE solvers. In Proc. of ICLR 2022 (2022).
Dong, S. & Li, Z. Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations. Comput. Methods Appl. Mech. Eng. 387, 114129 (2021).
Google Scholar
Shang, Y., Wang, F. & Sun, J. Deep Petrov–Galerkin method for solving partial differential equations. Preperint at (2022).
Li, Z., Huang, D. Z., Liu, B. & Anandkumar, A. Fourier neural operator with learned deformations for PDEs on general geometries. J. Mach. Learn. Res. (2023).
Zhuang, J., Kochkov, D., Bar-Sinai, Y., Brenner, M. P. & Hoyer, S. Learned discretizations for passive scalar advection in a two-dimensional turbulent flow. Phys. Rev. Fluids 6, 064605 (2021).
Google Scholar
Kube, R., Churchill, R.M. & Sturdevant, B. Machine learning accelerated particle-in-cell plasma simulations. In Proc. of Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021) (2021).
Stevens, B. & Colonius, T. FiniteNet: a fully convolutional LSTM network architecture for time-dependent partial differential equations. Preprint at (2020).
Alguacil, A., Bauerheim, M., Jacob, M. C. & Moreau, S. Predicting the propagation of acoustic waves using deep convolutional neural networks. J. Sound Vib. 512, 116285 (2021).
Google Scholar
Alguacil, A., Bauerheim, M., Jacob, M. C. & Moreau, S. Deep learning surrogate for the temporal propagation and scattering of acoustic waves. AIAA J. 60, 5890–5906 (2022).
Google Scholar
Bezgin, D. A., Schmidt, S. J. & Adams, N. A. WENO3-NN: a maximum-order three-point data-driven weighted essentially non-oscillatory scheme. J. Comput. Phys. 452, 110920 (2022).
Google Scholar
Xiao, X., Zhou, Y., Wang, H. & Yang, X. A novel cnn-based poisson solver for fluid simulation. IEEE Trans. Vis. Comput. Graphics 26, 1454–1465 (2018).
Google Scholar
Sanchez-Gonzalez, A. et al. Learning to simulate complex physics with graph networks. In International Conference on Machine Learning 8459–8468 (PMLR, 2020).
Klimesch, J., Holl, P. & Thuerey, N. Simulating liquids with graph networks. Preprint at (2022).
Wang, S., Wang, H. & Perdikaris, P. Improved architectures and training algorithms for deep operator networks. J. Sci. Comput. 92, 35 (2022).
Google Scholar
Gupta, J. K. & Brandstetter, J. Towards multi-spatiotemporal-scale generalized PDE modeling. Transact. Mach. Lean. Res. (2023).
McGreivy, N. & Hakim, A. Invariant preservation in machine learned PDE solvers via error correction. Preprint at (2023).
Stachenfeld, K. et al. Learned simulators for turbulence. In Proc. of International Conference on Learning Representations (ICLR) 2022 (2022).
Cheng, L., Illarramendi, E. A., Bogopolsky, G., Bauerheim, M. & Cuenot, B. Using neural networks to solve the 2D Poisson equation for electric field computation in plasma fluid simulations. Preprint at (2021).
Simmons, J. P., Nelson, L. D. & Simonsohn, U. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol. Sci. 22, 1359–1366 (2011).
Google Scholar
Wicherts, J. M. et al. Degrees of freedom in planning, running, analyzing, and reporting psychological studies: a checklist to avoid p-hacking. Front. Psychol. 7, 1832 (2016).
Serra-Garcia, M. & Gneezy, U. Nonreplicable publications are cited more than replicable ones. Sci. Adv. 7, eabd1705 (2021).
Google Scholar
Borji, A. Negative results in computer vision: a perspective. Image Vis. Comput. 69, 1–8 (2018).
Google Scholar
Smith, J. J., Amershi, S., Barocas, S., Wallach, H. & Wortman Vaughan, J. Real ML: recognizing, exploring, and articulating limitations of machine learning research. In 2022 ACM Conference on Fairness, Accountability, and Transparency 587–597 (ACM, 2022).
Gundersen, O. E. The case against registered reports. AI Magazine 42, 88–92 (2021).
Google Scholar
Schooler, J. W. Metascience could rescue the ‘replication crisis’. Nature 515, 9–9 (2014).
Google Scholar
Ray, D. & Hesthaven, J. S. An artificial neural network as a troubled-cell indicator. J. Comput. Phys. 367, 166–191 (2018).
Google Scholar
Wang, S. & Perdikaris, P. Long-time integration of parametric evolution equations with physics-informed deeponets. J. Comput. Phys. 475, 111855 (2023).
Google Scholar
Ovadia, O., Kahana, A., Turkel, E. & Dekel, S. Beyond the Courant–Friedrichs–Lewy condition: numerical methods for the wave problem using deep learning. J. Comput. Phys. 442, 110493 (2021).
Google Scholar
Li, Z. et al. Learning dissipative dynamics in chaotic systems. In Proc. of 36th Conference on Neural Information Processing Systems (NeurIPS) (2022).
Ni, N. & Dong, S. Numerical computation of partial differential equations by hidden-layer concatenated extreme learning machine. J. Sci. Comput. 95, 35 (2023).
Google Scholar
Dong, S. & Li, Z. A modified batch intrinsic plasticity method for pre-training the random coefficients of extreme learning machines. J. Comput. Phys. 445, 110585 (2021).
Google Scholar
Mueller, M., Greif, R., Jenko, F. & Thuerey, N. Leveraging thestochastic predictions of Bayesian neural networks for fluid simulations. In Machine Learning and the Physical Sciences workshop, NeurIPS 2022 (2022).
Wang, S., Bhouri, M. A. & Perdikaris, P. Fast PDE-constrained optimization via self-supervised operator learning. Preprint at (2021).
Schwander, L., Ray, D. & Hesthaven, J. S. Controlling oscillations in spectral methods by local artificial viscosity governed by neural networks. J. Comput. Phys. 431, 110144 (2021).
Google Scholar
Donon, B. et al. Deep statistical solvers. In 34th Conference on Neural Information Processing Systems Vol. 33, 7910–7921 (NeurIPS 2020).
Wan, Z. Y., Zepeda-Núñez, L., Boral, A. & Sha, F. Evolve smoothly, fit consistently: learning smooth latent dynamics for advection-dominated systems. In Proc. of International Conference on Learning Representaton (ICLR) (2023).
Di Leoni, P. C., Lu, L., Meneveau, C., Karniadakis, G. E. & Zaki, T. A. Neural operator prediction of linear instability waves in high-speed boundary layers. J. Comput. Phys. 474, 111793 (2023).
Google Scholar
Kovachki, N. et al. Neural operator: learning maps between function spaces with applications to PDEs. J. of Mach. Learn. Res. (2023).
Holl, P., Koltun, V., Um, K. & Thuerey, N. phiflow: a differentiable PDE solving framework for deep learning via physical simulations. In Workshop on Differentiable Vision, Graphics, and Physics in Machine Learning at NeurIPS (NeurIPS, 2020).
Nemmen, R., Duarte, R. & Navarro, J. P. The first AI simulation of a black hole. Proc. Intl Astron. Union 15, 329–333 (2020).
Google Scholar
Wandel, N., Weinmann, M. & Klein, R. Learning incompressible fluid dynamics from scratch–towards fast, differentiable fluid models that generalize. In Proc. of International Conference on Learning Representations (ICLR) 2021 (2021).
Haridas, A., Vadlamani, N. R. & Minamoto, Y. Deep neural networks to correct sub-precision errors in CFD. Appl. Energy Combustion Sci. 12, 100081 (2022).
Google Scholar
Guennebaud, G. et al. Eigen v 3 (Eigen, 2010); http://eigen.tuxfamily.org
Falgout, R. D. & Yang, U. M. hypre: A library of high performance preconditioners. In International Conference on Computational Science 632–641 (Springer, 2002).
Mayr, M., Wall, W. A. & Gee, M. W. Adaptive time stepping for fluid–structure interaction solvers. Finite Elements in Anal. Design 141, 55–69 (2018).
Google Scholar
Reynolds, D. R., Woodward, C. S., Gardner, D. J. & Hindmarsh, A. C. Arkode: a library of high order implicit/explicit methods for multi-rate problems. In SIAM Conference on Parallel Processing for Scientific Computing (2014).
Gottlieb, S., Shu, C.-W. & Tadmor, E. Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001).
Google Scholar
Hakim, A., Hammett, G., Shi, E. & Mandell, N. Discontinuous galerkin schemes for a class of hamiltonian evolution equations with applications to plasma fluid and kinetic problems. Preprint at (2019).
Cockburn, B. & Shu, C.-W. Tvb runge-kutta local projection discontinuous galerkin finite element method for conservation laws. ii. General framework. Math. Comput. 52, 411–435 (1989).
Google Scholar
Qin, T., Beatson, A., Oktay, D., McGreivy, N. & Adams, R. P. Meta-PDE: learning to solve pdes quickly without a mesh. Preprint at (2022).
McGreivy, N. & Hakim, A. Data Created During Random Sampling From and Systematic Review of ML-for-PDE Solving Research (OSF, 2024); https://doi.org/10.17605/OSF.IO/GQ5B3
McGreivy, N. nickmcgreivy/WeakBaselinesMLPDE: First release (v1.0) (Zenodo, 2024); https://doi.org/10.5281/zenodo.12682908
McGreivy, N. & Hakim, A. Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations. Code Ocean (2024).
McGreivy, N. & Hakim, A. (GPU Code) Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations. Code Ocean (2024).
Lu, L., Jin, P., Pang, G., Zhang, Z. & Karniadakis, G. E. Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nat. Mach, Intell. 3, 218–229 (2021).
Google Scholar
Tompson, J., Schlachter, K., Sprechmann, P. & Perlin, K. Accelerating eulerian fluid simulation with convolutional networks. In International Conference on Machine Learning, 3424–3433 (PMLR, 2017).
Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A. & Battaglia, P. W. Learning mesh-based simulation with graph networks. In Proc. of International Conference on Learning Representations (ICLR) 2021 (2021).
Kim, B. et al. Deep fluids: a generative network for parameterized fluid simulations. In Computer Graphics Forum Vol. 38, 59–70 (Wiley, 2019).
Cai, S., Wang, Z., Lu, L., Zaki, T. A. & Karniadakis, G. E. DeepM&Mnet: inferring the electroconvection multiphysics fields based on operator approximation by neural networks. J. Comput. Phys. 436, 110296 (2021).
Google Scholar
De Avila Belbute-Peres, F., Economon, T. & Kolter, Z. Combining differentiable PDE solvers and graph neural networks for fluid flow prediction. In International Conference on Machine Learning 2402–2411 (PMLR, 2020).
Yang, C., Yang, X. & Xiao, X. Data-driven projection method in fluid simulation. Comput. Animation Virtual Worlds 27, 415–424 (2016).
Google Scholar
Hsieh, J.-T., Zhao, S., Eismann, S., Mirabella, L. & Ermon, S. Learning neural PDE solvers with convergence guarantees. In Proc. of International Conference on Learning Representations (ICLR) 2021 (2021).
Mao, Z., Lu, L., Marxen, O., Zaki, T. A. & Karniadakis, G. E. DeepM&Mnet for hypersonics: predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of operators. J. Comput. Phys. 447, 110698 (2021).
Google Scholar
Greenfeld, D., Galun, M., Basri, R., Yavneh, I. & Kimmel, R. Learning to optimize multigrid PDE solvers. In International Conference on Machine Learning 2415–2423 (PMLR, 2019).
Ray, D. & Hesthaven, J. S. Detecting troubled-cells on two-dimensional unstructured grids using a neural network. J. Comput. Phys. 397, 108845 (2019).
Google Scholar
Shan, T. et al. Study on a fast solver for poisson’s equation based on deep learning technique. IEEE Trans. Antennas Propagation 68, 6725–6733 (2020).
Google Scholar
Luz, I., Galun, M., Maron, H., Basri, R. & Yavneh, I. Learning algebraic multigrid using graph neural networks. In International Conference on Machine Learning 6489–6499 (PMLR, 2020).
Pathak, J. et al. Using machine learning to augment coarse-grid computational fluid dynamics simulations. Preprint at (2020).
Di Leoni, P. C., Lu, L., Meneveau, C., Karniadakis, G. & Zaki, T. A. Neural operator prediction of linear instability waves in high-speed boundary layers. J. Comput. Phys. (2023).
Stevens, B. & Colonius, T. Enhancement of shock-capturing methods via machine learning. Theor. Comput. Fluid Dyn. 34, 483–496 (2020).
Google Scholar
Illarramendi, E. A. et al. Towards an hybrid computational strategy based on deep learning for incompressible flows. In AIAA Aviation 2020 Forum 3058 (AIAA, 2020).
Han, X., Gao, H., Pfaff, T., Wang, J.-X. & Liu, L.-P. Predicting physics in mesh-reduced space with temporal attention. In Proc. of the International Conference on Learning Responses (ICLR) 2022 (2022).
Özbay, A. G. et al. Poisson CNN: convolutional neural networks for the solution of the poisson equation on a cartesian mesh. Data-Centric Eng. 2, e6 (2021).
Google Scholar
Li, Z. & Farimani, A. B. Graph neural network-accelerated Lagrangian fluid simulation. Comput. Graphics 103, 201–211 (2022).
Google Scholar
Peng, W., Yuan, Z. & Wang, J. Attention-enhanced neural network models for turbulence simulation. Phys. Fluids, 34, 025111 (2022).
Chen, L.-W., Cakal, B. A., Hu, X. & Thuerey, N. Numerical investigation of minimum drag profiles in laminar flow using deep learning surrogates. J. Fluid Mech. 919, A34 (2021).
Google Scholar
Wandel, N., Weinmann, M. & Klein, R. Teaching the incompressible navier–stokes equations to fast neural surrogate models in three dimensions. Phys. Fluids, 33, 047117 (2021).
List, B., Chen, L.-W. & Thuerey, N. Learned turbulence modelling with differentiable fluid solvers: physics-based loss functions and optimisation horizons. J. Fluid Mech. 949, A25 (2022).
Google Scholar
Wen, X., Don, W. S., Gao, Z. & Hesthaven, J. S. An edge detector based on artificial neural network with application to hybrid compact-weno finite difference scheme. J. Sci. Comput. 83, 1–21 (2020).
Google Scholar
de Lara, F. M. & Ferrer, E. Accelerating high order discontinuous galerkin solvers using neural networks: 1D Burgers’ equation. Comput. Fluids 235, 105274 (2022).
Google Scholar
Zhao, Q., Lindell, D. B. & Wetzstein, G. Learning to solve PDE-constrained inverse problems with graph networks. In Proc. of the 39th International Conference on Machine Learning (eds Chaudhuri, K et al.) 162, 26895–26910 (2022).
Illarramendi, E. A., Bauerheim, M. & Cuenot, B. Performance and accuracy assessments of an incompressible fluid solver coupled with a deep convolutional neural network. Data-Centric Engineering 3, e2 (2022).
Google Scholar
Holloway, I., Wood, A. & Alekseenko, A. Acceleration of boltzmann collision integral calculation using machine learning. Mathematics 9, 1384 (2021).
Google Scholar
Azulay, Y. & Treister, E. Multigrid-augmented deep learning preconditioners for the helmholtz equation. SIAM J. Sci. Comput. 45, S127–S151 (2022).
Google Scholar
Wu, T., Maruyama, T. & Leskovec, J. Learning to accelerate partial differential equations via latent global evolution. In 36th Conference on Neural Information Processing Systems Vol. 35, 2240–2253 (NeurIPS 2022).
Liu, X.-Y., Sun, H., Zhu, M., Lu, L. & Wang, J.-X. Predicting parametric spatiotemporal dynamics by multi-resolution PDE structure-preserved deep learning. Preprint at (2022).
Zhang, E. et al. A hybrid iterative numerical transferable solver (hints) for pdes based on deep operator network and relaxation methods. Preprint at (2022).
Duarte, R., Nemmen, R. & Navarro, J. P. Black hole weather forecasting with deep learning: a pilot study. Monthly Notices R. Astron. Soc. 512, 5848–5861 (2022).
Google Scholar
Huang, X. et al. LordNet: an efficient neural network for learning to solve parametric partial differential equations without simulated data. Neural Netw. (2024).
Ranade, R., Hill, C., He, H., Maleki, A. & Pathak, J. A latent space solver for PDE generalization. In ICLR 2021 SimDL Workshop (2021).
Chen, R., Jin, X. & Li, H. A machine learning based solver for pressure poisson equations. Theor. Appl. Mech. Lett. 12, 100362 (2022).
Google Scholar
Ranade, R. et al. A composable autoencoder-based iterative algorithm for accelerating numerical simulations. Preprint at (2021).
Peng, W., Yuan, Z., Li, Z. & Wang, J. Linear attention coupled fourier neural operator for simulation of three-dimensional turbulence. Phys. Fluids, 35, 015106 (2023).
de Lara, F. M. & Ferrer, E. Accelerating high order discontinuous galerkin solvers using neural networks: 3D compressible Navier–Stokes equations. J. Comput. Phys. 489, 112253, (2023).
Ranade, R., Hill, C., Ghule, L. & Pathak, J. A composable machine-learning approach for steady-state simulations on high-resolution grids. In 36th Conference on Neural Information Processing Systems Vol. 35, 17386–17401 (NeurIPS, 2022).
Fang, D. & Tan, J. Immersed boundary-physics informed machine learning approach for fluid–solid coupling. Ocean Eng. 263, 112360 (2022).
Google Scholar
Shukla, K. et al. Deep neural operators can serve as accurate surrogates for shape optimization. Eng. Appl. Artif. Intell. (2024).
Zhang, T., Innanen, K. & Trad, D. Learning the elastic wave equation with fourier neural operators. Geoconvention 2022, 1–5 (2022).
Bezgin, D. A., Buhendwa, A. B. & Adams, N. A. A fully-differentiable compressible high-order computational fluid dynamics solver. Preprint at (2021).
Yang, Y., Gao, A. F., Azizzadenesheli, K., Clayton, R. W. & Ross, Z. E. Rapid seismic waveform modeling and inversion with neural operators. IEEE Trans. Geosci. Remote Sensing 61, 1–12 (2023).
Tang, J., Azevedo, V. C., Cordonnier, G. & Solenthaler, B. Neural green’s function for laplacian systems. Comput. Graphics 107, 186–196 (2022).
Google Scholar
Nastorg, M. et al. DS-GPS: a deep statistical graph poisson solver (for faster CFD simulations). In Machine Learning and the Physical Sciences workshop, NeurIPS 2022 (2022).
Gopakumar, V. et al. Fourier neural operator for plasma modelling. Preprint at (2023).
Shit, S. et al. Semi-implicit neural solver for time-dependent partial differential equations. Preprint at (2021).
Su, X., Walters, R., Aslangil, D. & Yu, R. Forecasting variable-density 3D turbulent flow. In ICLR 2021 SimDL Workshop (ICLR, 2021).
Jeon, J., Lee, J., Eivazi, H., Vinuesa, R. & Kim, S. J. Residual-based physics-informed transfer learning: a hybrid method for accelerating long-term CFD simulations via deep learning. Int. J. Heat Mass Transf. (2024).
Dai, Y., An, Y. & Li, Z. Fournetflows: an efficient model for steady airfoil flows prediction. Preprint at (2022).
Sun, J., Dong, S. & Wang, F. Local randomized neural networks with discontinuous Galerkin methods for partial differential equations. J. Comput. App. Math. (2024).
Shao, T., Shan, T., Li, M., Yang, F. & Xu, S. A poisson’s equation solver based on neural network precondtioned CG method. In 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China) 1–2 (IEEE, 2022).
link