Cocucci, E., Aguet, F., Boulant, S. & Kirchhausen, T. The first five seconds in the life of a clathrin-coated pit. Cell 150, 495–507 (2012).
Google Scholar
Johnson, C., Exell, J., Lin, Y., Aguilar, J. & Welsher, K. D. Capturing the start point of the virus-cell interaction with high-speed 3D single-virus tracking. Nat. Methods 19, 1642–1652 (2022).
Google Scholar
Liu, T.-L. et al. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science 360, eaaq1392 (2018).
Google Scholar
Thomsen, R. P. et al. A large size-selective DNA nanopore with sensing applications. Nat. Commun. 10, 5655 (2019).
Google Scholar
Aguet, F. et al. Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy. Mol. Biol. Cell 27, 3418–3435 (2016).
Google Scholar
Moses, M. E. et al. Single-molecule study of Thermomyces lanuginosus lipase in a detergency application system reveals diffusion pattern remodeling by surfactants and calcium. ACS Appl. Mater. Interfaces 13, 33704–33712 (2021).
Google Scholar
Jensen, S. B. et al. Biased cytochrome P450-mediated metabolism via small-molecule ligands binding P450 oxidoreductase. Nat. Commun. 12, 2260 (2021).
Google Scholar
Gabriele, M. et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 376, 496–501 (2022).
Google Scholar
Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).
Google Scholar
Wan, F. et al. Ultrasmall TPGS-PLGA hybrid nanoparticles for site-specific delivery of antibiotics into Pseudomonas aeruginosa biofilms in lungs. ACS Appl. Mater. Interfaces 12, 380–389 (2020).
Google Scholar
Gal, N., Lechtman-Goldstein, D. & Weihs, D. Particle tracking in living cells: a review of the mean square displacement method and beyond. Rheol. Acta 52, 425–443 (2013).
Google Scholar
Arcizet, D., Meier, B., Sackmann, E., Rädler, J. O. & Heinrich, D. Temporal analysis of active and passive transport in living cells. Phys. Rev. Lett. 101, 248103 (2008).
Google Scholar
Pinholt, H. D., Bohr, S. S.-R., Iversen, J. F., Boomsma, W. & Hatzakis, N. S. Single-particle diffusional fingerprinting: a machine-learning framework for quantitative analysis of heterogeneous diffusion. Proc. Natl Acad. Sci. USA 118, e2104624118 (2021).
Google Scholar
Kowalek, P., Loch-Olszewska, H. & Szwabiński, J. Classification of diffusion modes in single-particle tracking data: feature-based versus deep-learning approach. Phys. Rev. E 100, 032410 (2019).
Google Scholar
Benning, N. A. et al. Dimensional reduction for single-molecule imaging of DNA and nucleosome condensation by polyamines, HP1α and Ki-67. J. Phys. Chem. B 127, 1922–1931 (2023).
Google Scholar
Vega, A. R., Freeman, S. A., Grinstein, S. & Jaqaman, K. Multistep track segmentation and motion classification for transient mobility analysis. Biophys. J. 114, 1018–1025 (2018).
Google Scholar
Monnier, N. et al. Inferring transient particle transport dynamics in live cells. Nat. Methods 12, 838–840 (2015).
Google Scholar
Persson, F., Lindén, M., Unoson, C. & Elf, J. Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat. Methods 10, 265–269 (2013).
Google Scholar
Chen, Z., Geffroy, L. & Biteen, J. S. NOBIAS: analyzing anomalous diffusion in single-molecule tracks with nonparametric Bayesian inference. Front. Bioinform. 1, 742073 (2021).
Google Scholar
Arts, M., Smal, I., Paul, M. W., Wyman, C. & Meijering, E. Particle mobility analysis using deep learning and the moment scaling spectrum. Sci. Rep. 9, 17160 (2019).
Google Scholar
Vink, J. N. A., Brouns, S. J. J. & Hohlbein, J. Extracting transition rates in particle tracking using analytical diffusion distribution analysis. Biophys. J. 119, 1970–1983 (2020).
Google Scholar
Martens, K. J. A. et al. Visualisation of dCas9 target search in vivo using an open-microscopy framework. Nat. Commun. 10, 3552 (2019).
Google Scholar
Karslake, J. D. et al. SMAUG: analyzing single-molecule tracks with nonparametric Bayesian statistics. Methods 193, 16–26 (2021).
Google Scholar
Simon, F., Tinevez, J.-Y. & van Teeffelen, S. ExTrack characterizes transition kinetics and diffusion in noisy single-particle tracks. J. Cell Biol. 222, e202208059 (2023).
Google Scholar
Momboisse, F. et al. Tracking receptor motions at the plasma membrane reveals distinct effects of ligands on CCR5 dynamics depending on its dimerization status. eLife 11, e76281 (2022).
Google Scholar
Hansen, A. S. et al. Robust model-based analysis of single-particle tracking experiments with Spot-On. eLife 7, e33125 (2018).
Google Scholar
Martens, K. J. A., Turkowyd, B., Hohlbein, J. & Endesfelder, U. Temporal analysis of relative distances (TARDIS) is a robust, parameter-free alternative to single-particle tracking. Nat. Methods (2024).
Google Scholar
Muñoz-Gil, G. et al. Objective comparison of methods to decode anomalous diffusion. Nat. Commun. 12, 6253 (2021).
Google Scholar
You, B. & Yang, G. Attention-based LSTM for motion switching detection of particles in living cells. In 2021 International Joint Conference on Neural Networks (IJCNN) 1–6 (IEEE, 2021); https://doi.org/10.1109/IJCNN52387.2021.9533629
Dosset, P. et al. Automatic detection of diffusion modes within biological membranes using back-propagation neural network. BMC Bioinformatics 17, 197 (2016).
Google Scholar
Wagner, T., Kroll, A., Haramagatti, C. R., Lipinski, H.-G. & Wiemann, M. Classification and segmentation of nanoparticle diffusion trajectories in cellular micro environments. PLoS ONE 12, e0170165 (2017).
Google Scholar
Granik, N. et al. Single-particle diffusion characterization by deep learning. Biophys. J. 117, 185–192 (2019).
Google Scholar
Simon, F., Weiss, L. E. & van Teeffelen, S. A guide to single-particle tracking. Nat. Rev. Methods Prim. 4, 66 (2024).
Google Scholar
Qu, X. et al. Semantic segmentation of anomalous diffusion using deep convolutional networks. Phys. Rev. Res. 6, 013054 (2024).
Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Google Scholar
Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018).
Google Scholar
Thomsen, J. et al. DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning. eLife 9, e60404 (2020).
Google Scholar
Malle, M. G. et al. Single-particle combinatorial multiplexed liposome fusion mediated by DNA. Nat. Chem. 14, 558–565 (2022).
Google Scholar
Levet, F. et al. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat. Methods 12, 1065–1071 (2015).
Google Scholar
Kim, H. K. et al. SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance. Sci. Adv. 5, eaax9249 (2019).
Google Scholar
Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 626, 177–185 (2024).
Google Scholar
Dunn, K. W., Kamocka, M. M. & McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol., Cell Physiol. 300, C723–C742 (2011).
Google Scholar
Merino Urteaga, R. & Ha, T. Mind your tag in single-molecule measurements. Cell Rep. Methods 3, 100623 (2023).
Google Scholar
Yin, X.-X., Sun, L., Fu, Y., Lu, R. & Zhang, Y. U-Net-based medical image segmentation. J. Healthc. Eng. 2022, 4189781 (2022).
Google Scholar
Ruthardt, N., Lamb, D. C. & Bräuchle, C. Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol. Ther. 19, 1199–1211 (2011).
Google Scholar
Guo, C., Pleiss, G., Sun, Y. & Weinberger, K. Q. On calibration of modern neural networks. In Proc. 4th International Conference on Machine Learning 1321–1330 (JMLR, 2017).
Michalet, X. Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E 82, 041914 (2010).
Google Scholar
Slator, P. J., Cairo, C. W. & Burroughs, N. J. Detection of diffusion heterogeneity in single particle tracking trajectories using a hidden Markov model with measurement noise propagation. PLoS ONE 10, e0140759 (2015).
Google Scholar
Abdelhakim, A. H. et al. Structural correlates of rotavirus cell entry. PLoS Pathog. 10, e1004355 (2014).
Google Scholar
Salgado, E. N., Garcia Rodriguez, B., Narayanaswamy, N., Krishnan, Y. & Harrison, S. C. Visualization of calcium ion loss from rotavirus during cell entry. J. Virol. 92, e01327-18 (2018).
Google Scholar
Aoki, S. T. et al. Cross-linking of rotavirus outer capsid protein VP7 by antibodies or disulfides inhibits viral entry. J. Virol. 85, 10509–10517 (2011).
Google Scholar
Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).
Google Scholar
Piper, R. C. & Katzmann, D. J. Biogenesis and function of multivesicular bodies. Annu. Rev. Cell Dev. Biol. 23, 519–547 (2007).
Google Scholar
Collinet, C. et al. Systems survey of endocytosis by multiparametric image analysis. Nature 464, 243–249 (2010).
Google Scholar
Cocucci, E., Gaudin, R. & Kirchhausen, T. Dynamin recruitment and membrane scission at the neck of a clathrin-coated pit. Mol. Biol. Cell 25, 3595–3609 (2014).
Google Scholar
Allan, D., Caswell, T., Keim, N. & van der Wel, C. Trackpy: Trackpy v0.3.2. Zenodo (2016).
Mizrak, A. et al. Single-molecule analysis of protein targeting from the endoplasmic reticulum to lipid droplets. Preprint at bioRxiv (2024).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Google Scholar
Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI) Vol. 9351 (eds Navab, N., Hornegger, J., Wells, W. M. & Frangi, A. F.) 234–241 (Springer, 2015).
Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna: a next-generation hyperparameter optimization framework. In Proc. 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (eds Teredesai, V. K. et al.) 2623–2631 (ACM Press, 2019); https://doi.org/10.1145/3292500.3330701
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).
Google Scholar
Kang, Y.-L. et al. Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 20803–20813 (2020).
Google Scholar
Bohr, F. et al. Enhanced hexamerization of insulin via assembly pathway rerouting revealed by single particle studies. Commun. Biol. 6, 178 (2023).
Google Scholar
Østergaard, M., Mishra, N. K. & Jensen, K. J. The ABC of insulin: the organic chemistry of a small protein. Chem. Eur. J. 26, 8341–8357 (2020).
Google Scholar
He, K. et al. Dynamics of phosphoinositide conversion in clathrin-mediated endocytic traffic. Nature 552, 410–414 (2017).
Google Scholar
Kæstel-Hansen, J. DeepSPT data and models. University of Copenhagen (2024).
Bohr, S. S.-R. et al. Direct observation of Thermomyces lanuginosus lipase diffusional states by single particle tracking and their remodeling by mutations and inhibition. Sci. Rep. 9, 16169 (2019).
Google Scholar
Kæstel-Hansen, J. DeepSPT code. University of Copenhagen (2024).
Kæstel-Hansen, J. DeepSPT code and models. University of Copenhagen (2024).
link